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Early Praise for The Ray Tracer
Challenge

Following in the footsteps of his book, Mazes for
Programmers, Buck once again takes a challenging
concept, presents it in an easy-to-understand format, and
reminds us that programming can be both fun and
rewarding.

— Dr. Sebastian Raaphorst
Gemini Observatory

This is a problem domain that I’'ve always wanted to get
into but have struggled to find anything approachable for
someone who doesn’t know or isn’t good at all with C or
C++. This book is a godsend.

— Danielle Kefford
Software Engineer

This book is devious. Little by little, a test here and a test
there, you’ll create an incredibly sophisticated ray tracing
library. Because each change is so small, your ray tracer
will sneak up on you. That’s the devious part: by the end
you’ll have built an amazingly complex piece of software,
but it will never feel difficult!

— Cory Forsyth



Founding Partner, 201 Created, Inc.

In The Ray Tracer Challenge Jamis Buck tames a difficult
topic using an entertaining, practical approach that even
the mathematically averse will enjoy. The test-driven
approach challenges and rewards the reader with
experiences and artifacts that remind even the grizzled
software curmudgeon of the joyful moments in software
development that inspired us to pursue engineering in the
first place.

— Justin Ball
CTO, Atomic Jolt

Creating a ray tracer is a rite of passage that I recommend
all developers endeavor to complete. Jamis does a great
job presenting complex topics simply and allowing the
reader to focus on the most interesting parts of the
project. Working through this book is almost guaranteed
to bring your programming skills up a notch.

— Jason Pike
Director, Software Engineering, Atlas RFID Solutions

The Ray Tracer Challenge is a delightful introduction to
3D lighting and rendering through ray tracing. Yes, there
is math, but Jamis provides great examples, and the
exercises illustrate concepts in a style that is way more fun
than any math class I took in college!

— Matthew Margolis
Director, Software Engineering



Taking the Ray Tracer Challenge was so much fun.
Starting with some short tests, you’ll create beautifully
rendered images with just a little bit of math and code.

— Justin Weiss
Senior Software Engineer, Aha!

With this book, I can use what I learned at the university
thirteen years ago, and it’s now fun! The Ray Tracer
Challenge gave me back my joy for pet projects. I
recommend it to everyone!

— Gébor Laszl6 Hajba
Senior IT Consultant

One of the tricks to avoiding programmer burnout is to
find a passion project. In this book, you’ll find exactly that:
an awesome personal project that you can tackle
regardless of your language background. Jamis’s The Ray
Tracer Challenge shows us that the best passion projects
are shared.

— Kevin Gisi
Senior UX Engineer
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Foreword

My adventures in ray tracing began in 1986. I owned an Amiga
computer, and a friend came over with a floppy disk containing
the C source code for a ray tracer written for Unix. I thought it
would be interesting to try it out, so I got it to compile on my
Amiga and rendered my first picture. It produced a black and
white image of spheres over a flat plane. I was instantly
mesmerized. The thought that a computer program was able to
draw such a realistic picture was amazing to me. I adapted the
program to render color images instead of just black and white
and I found the result even more spectacular.



My journey into ray tracing led me to write my own ray tracing
program called DKBTrace, which I released as freeware. I
figured that I’'d had fun writing it and I wanted other people to
have fun using it. DKBTrace started to become quite popular in
the late 1980s, so I worked with a group of developers to
transform it into a ray tracer called POV-Ray. POV-Ray is now
the most popular freeware ray tracing program available today.
Although I haven’t done any development on POV-Ray since the
early 1990s, the POV-Ray team has transformed it into a top-



notch ray tracer capable of producing truly stunning images.

Now, Jamis Buck (no relation) has written a book showing how
to write a ray tracing program of your own. His explanations are
clear and fun to follow. He leads you through the development
by writing tests first, then getting the tests to run. The book is
programming language agnostic so you can write the ray tracer
in any programming language you like. In fact, I wrote all of the
exercises in Smalltalk—my favorite programming language. I
was able to relive the excitement and the joy of building up a ray
tracing program from scratch and viewing images I'd created by
my software. This isn’t a book that you just read through. It’s a
book that guides you to write your own programs. It takes you
on a fun journey and gives you the satisfaction of creating your
own stunning images.

Now I invite you to follow us on the journey. Along the way,
you’ll learn about computer graphics and software
development. You'll learn the basic techniques used to render
movies like Ice Age and Cars. Most important, though, you’ll
enjoy the satisfaction of writing your own software that can
amaze you. This book lays out the path and leads you along.
Now it’s time for you to take the first steps. Enjoy the journey.

David Buck
Author of DKBTrace and Coauthor of POV-Ray

Copyright © 2019, The Pragmatic Bookshelf.



Getting Started

Okay. You are officially awesome. You're one of those
programmers, the ones who actively seek out new ways to apply
their craft and tackle challenges for the thrill of it. You're in
good company!

With this book, you're going to build a 3D renderer from
scratch. Specifically, you’ll build a ray tracer, casting rays of
light backward into a scene and following their paths as they
bounce around toward a light source. It’s generally not a very
fast technique (and so isn’t well-suited for real-time rendering)
but it can produce very realistic results. By the end of this book,
you’ll be able to render scenes like this one:



And you don’t have to be a mathematician or computer scientist
to do it!

Beginning at the bottom, you’ll build a foundation of basic
routines and tools. You'll use those to bootstrap other routines,
making light rays, shapes, and functions to predict how they’ll
interact. Then things start moving quickly, and within a few
chapters you’ll be producing realistic images of 3D spheres.
You’ll add shadows and visual effects like geometric patterns,
mirror reflections, and glass. Other shapes follow—planes,
cubes, cylinders, and more. By the end of the book, you’ll be
taking these primitive shapes and combining them in complex
ways using set operations. There’ll be no stopping you!

The specific algorithm you’ll implement is called Whitted ray
tracing,™ named for Turner Whitted, the researcher who



described it in 1979. It’s often referred to as recursive ray
tracing, because it works by recursively spawning rays (lines
representing rays of light) and bouncing them around the scene
to discover what color each pixel of the final image should be. In
a nutshell, the algorithm works like this for each of the image’s
pixels:

1. Cast a ray into the scene, and find where it strikes a surface.

2. Cast a ray from that point toward each light source to determine
which lights illuminate that point.

3. If the surface is reflective, cast a new ray in the direction of
reflection and recursively determine what color is reflected there.

4. If the surface is transparent, do the same thing in the direction of
refraction.

5. Combine all colors that contribute to the point (the color of the
surface, the reflection, and refraction) and return that as the color
of the pixel.

Over the course of this book, you’ll implement each of those
steps, learning how to compute reflection vectors, how to
approximate refraction, how to intersect rays with various
primitive shapes, and more. Sooner than you might think, you’ll
be rendering awesome 3D scenes!



Who This Book Is For

Ultimately, this book is for anyone who loves writing code, but
you’ll get the most out of it if:

¢ You have prior experience writing software (perhaps a year or
more).

e You’'ve written unit tests before.

¢ You like tinkering and experimenting with code and algorithms.

It really doesn’t matter what programming environment or
operating system you prefer. The only code in this book is
pseudocode. Admittedly, the explanations do tend toward
imperative, procedural, and object-oriented languages, but the
concepts and tests themselves are translatable to any
environment you wish.



How to Read This Book

Each chapter is presented as a series of tests covering a small
piece of the overall ray tracer. Since each one builds on previous
chapters, you’ll be most successful if you read them in sequence.

You’'ll implement your ray tracer in test-first style, writing a few
tests at a time and making them pass by implementing the
corresponding functions and features in code. The first half of
the book is structured to take you smoothly from test to test, but
as you get into the second half of the book, the pace picks up.
With greater experience comes greater responsibility! You’ll still
be given the tests, but there will be less hand-holding, and the
tests will be presented in a more linear fashion, almost like a
checklist.

Each chapter introduces one or more new features, discusses
how the feature works at a high level, and then walks you
through the tests and how to make them pass. The tests are
posed as Cucumber scenarios,! but it is absolutely not
necessary to use Cucumber to implement them. Please feel free
to use whatever system you prefer to write your tests!

Typically, Cucumber is used to describe high-level interactions
between a user and an application, but the tests in this book use
it differently. Here, you’ll see it used to describe lower-level
interactions, like how various inputs to a specific function might
affect the function’s output. This lets the book walk you through
the construction of an API, step by step, rather than just
showing you the high-level behavior that you need to try to
emulate. For example, consider the following hypothetical



specification which describes the behavior of concatenating two
arrays.

Scenario: Concatenating two arrays should create a new array
Given a « array(1, 2, 3)
And b - array(3, 4, 5)
Whenc — a+b
Then c = array(1, 2, 3, 3,4, 5)

It’s structured like any Cucumber scenario, but describes low-
level API interactions:

¢ It begins with two assumptions (“Given...And”), which must be true
to start. These use left arrows () to assign two arrays to two
variables, a and b.

¢ After everything has been initialized, an action occurs (“When”).

The result of this action is what is to be tested. Note that this also
uses the left arrow, assigning the result of concatenating a and b to
another variable, c.

e Finally, an assertion is made (“Then”), which must be true. This
uses the equals operator (=) to assert that the variable c is equal to
the given array.

Your job as the reader is to implement each test, and then make
each pass. You're welcome to do so in Cucumber if you like—in
fact, the Cucumber tests may be downloaded from the
publisher,! to save you the effort of keying them all in by hand.
But if Cucumber isn’t your thing, you can be just as successful
by translating the Cucumber scenarios into whatever testing
system you prefer. Honestly, part of the puzzle—part of the fun!
—is translating each specification into a working unit test. The
scenario tells you what the behavior should be. You get to
decide how to make it happen.



While working through this book, you're going to discover that
an implementation that worked for one test might not work well
(or at all) for a later test. You'll need to be flexible and willing to
refactor as you discover new requirements. That, or read the
entire book through before beginning your implementation so
you know what’s coming up.

Also, be aware that I've made many of the architectural
decisions in this book with the goal of being easy to explain.
Often, there will be more efficient ways to implement a
function, or to architect a feature. You may disagree with the
book at times, and that’s okay! This book is a roadmap,
describing just one of many possible ways to get to the goal.
Follow your own aesthetic sense. Make your code your own.

Lastly, at the end of each chapter is a section called “Putting It
Together.” This is where you’ll find a description of something
that builds on the code you wrote for that chapter and gives you
a chance to play and experiment with your new code.
Sometimes it will be a small project, and other times a list of
possible things to try or directions to explore. It’s certainly
possible to skip those sections if you're in a hurry, but if you do
you’ll be missing one of the most enjoyable parts of the journey.



Things to Watch Out For

A ray tracer is math-heavy. There’s no getting around it. It
works its magic by crunching numbers, finding intersections
between lines and shapes, computing reflections and
refractions, and blending colors. So, yes, there will be a great
deal of math here, but I will mostly give it to you, ready to
implement. You’ll find little or no focus on where the math
comes from, no derivations of formulas, no explanations of why
an equation does what it does. You'll see the formulas and,
where necessary, walk through how to implement them, but you
won’t wade through proofs and derivations. If the proofs and
derivations are what you particularly enjoy, you can always find
a great deal of information about them online.

Also, number-crunching tends to be fairly CPU-intensive. A ray
tracer offers a lot of opportunities to optimize code, but that’s
not the focus of this book. If you follow along and implement
just what is described, your code will probably not be very
efficient or very fast—but it will work. Think of optimization as
a bonus exercise!

Other things to watch out for, in no particular order, are these:

Comparing floating-point numbers

Especially in tests, you’ll need to be able to compare two
floating-point numbers to determine if they are
approximately equal. The specifications in the book
represent this loose comparison with a simple equals
sign. In practice, you'll need to be more explicit and test
that the two numbers are within an error value that the



book refers to as EPSILON, something like this: |a - b| <
EPSILON. In practice, using a tiny value like 0.0001 for
EPSILON is generally fine.

Comparing data structures

As with comparing numbers, it’s also assumed that you’ll
need to compare data structures to see if they are equal.
For example, you’ll need to be able to see whether two
points are the same. These comparison routines aren’t
explicitly described in the book, but you’ll need to
implement them all the same. It wouldn’t hurt to add
tests for these routines, too, despite them not being given
in the book.

Representing infinity

In later chapters, like Chapter 12, Cubes, and Chapter 13,
Cylinders, you’ll need to be able to compare numbers
with infinity. If your programming language can
represent infinity natively, that’s great! Otherwise, you
can usually fake it by using a very large number instead.
(Something like 1x10'? is usually plenty. In many
programming languages, you can write that as 1e10.)

Use your own names and architecture!

The names of functions and variables given in the book
are just recommendations. The functions are designed so
that the first argument is the “responsible party,” or the
entity with responsibility for the domain in question. In
object-oriented terms, the first argument would be the self
object. But don’t let this stop you from reassigning those
responsibilities if you prefer. You should always feel free
to choose names more appropriate to your own
architecture.



Also, the ray tracer will be described imperatively, but
you should look for ways to adapt these descriptions to
the strengths and idioms of your programming
environment. Embrace your classes, modules,
namespaces, actors, and monads, and make this ray
tracer your own!

A lot of work has gone into making sure everything in this book
is accurate and error-free, but nobody’s perfect. If you happen
to find a mistake somewhere, please let me know about it. You
can report errata on the book’s web site.'*) And be sure to visit
the book’s discussion forum,® where you can ask questions,
share tips and tricks, and post eye candy you’'ve rendered with
your ray tracer. This forum is purely my own and is not
affiliated with the Pragmatic Bookshelf in any way.

With all that out of the way, brace yourself—we’re going to jump
right in and get started. This is going to be fun!

Footnotes

[1] https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#Recursive_ray_tracing_algorit
hm

[2] Technically, the tests are written in Gherkin, which is the language in which Cucumber
specs are written. See https://cucumber.io.

[3] https://pragprog.com/book/jbtracer/the-ray-tracerchallenge
[4] https://pragprog.com/book/jbtracer/the-ray-tracerchallenge

[5] http://forum.raytracerchallenge.com
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Chapter 1

Tuples, Points, and Vectors

A sphere sits alone in a room with checkered walls and floor. It
reflects light from a bulb somewhere above it. In fact, it reflects
just about everything: the checkered wall behind the camera,

the ceiling above, and even (if you look closely) its own shadow.



Mmmm. Isn’t that gorgeous? Don’t you just want to touch that
sphere? Well, step in close and let me tell you a little secret. You
ready?

You'll be rendering scenes like this with software you wrote
yourself before you're half done with this book.

It’s the truth. Cross my heart. It’s all just modeling light and
objects and how they interact.



But before you can model things like light and objects, you need
to be able to represent fundamental concepts like position and
direction and distance. For example, that sphere must be
located somewhere in a scene before your renderer can draw it.
Realistic shading relies heavily on the direction from a surface
to the light source, and reflections are all about following the
change of direction of a ray of light.

Fortunately, these concepts—position, direction, and distance—
are neatly encapsulated in a little thing called a tuple.

Let the first chapter begin!



Tuples

A tuple is just an ordered list of things, like numbers. That’s
pretty abstract, though, so let’s use the concept of position to
illustrate it.

Let’s say that you're walking in a park one day. You go forward
four meters, and suddenly the ground falls out from beneath
you. Down you go, landing four meters later. There you discover
a mysterious tunnel to the left, which you crawl along for three
more meters. At that point, you discover a chest full of gold
coins, and you celebrate. Yay!

Let’s say your first four meters were in the x direction, the
second four (when you fell), in the negative (downward) y
direction, and the last three (in the tunnel) in the z direction.
Those three distances, then, can represent the position of the
treasure, in which case we would write them like (4, -4, 3). This is
a tuple, and this specific tuple is also called a point (because it
represents a point in space).



Left-Handed vs. Right-Handed Coordinates

With the y axis pointing up, and the x axis pointing to the right, the z axis can
be defined to point either toward you, or away from you.

This book uses a left-handed coordinate system. If you take the thumb of
your left hand and point it in the +x direction, and then point the fingers of
the hand in the direction of +y, you’ll find that if you curl your fingers toward
your palm, they’ll curl away from you. That’s the direction of the z axis for
the purposes of this book.

~X

Many sites, documents, articles, books, and APls use a right-handed
coordinate system, in which the z axis points toward you. There’s nothing
wrong with either approach. I’ve chosen to stick with the left-handed system
because it’s used in some popular renderers, including Pixar’s RenderMan
system, -~ the Unity- ~ game engine, and the open-source POV-Ray ray

tracer.

Directions work the same way. Let’s say you're standing next to
the (now-empty) treasure chest, getting your bearings. You take
a moment and mentally draw an arrow pointing from your



current position, to where you started. This line will point
negative four meters in the x direction, positive four meters in
the y direction, and negative three meters in the z direction, or
(-4, 4, -3). This tuple—a vector now—tells us not only the
direction in which to look, but also how far to go in that
direction. Pretty cool!

But looking at (4, -4, 3) and (-4, 4, -3), it’s impossible to know that
one is a point and the other is a vector. Let’s add a fourth
component to these (x, y, z) tuples, called w, to help us tell them
apart. Set w to 1 for points, and o for vectors. Thus, your point
becomes (4, -4, 3, 1), and your vector becomes (-4, 4, -3, 0).

Now, the choice of 0 or 1 for w probably seems arbitrary just
now, but sit tight! It’ll make more sense when you get to
Chapter 3, Matrices, where it turns out to be rather important
for multiplying matrices and tuples.

This is all pretty fundamental stuff, so it’s important that it work
correctly. To that end, you're going to write some tests—
preferably before you write any actual code—to make sure it
comes out right.

Avoid complex data types as much as possible as you

implement your tuples. For instance, you should prefer native
( floating point numbers over arbitrary-precision abstractions.
These tuples are going to be some of your ray tracer’s
workhorses, so you’ll want them to be lean and fast!

QG

Use the following two specifications to guide your tests. The



first one shows that a tuple is a point when w is 1, and a second
shows that a tuple is a vector when w is 0. Use these tests to

demonstrate how your implementation accesses the individual
components of the tuple, as well.

features/tuples.feature

Scenario: A tuple with w=1.0 is a point
Given a — tuple(4.3, -4.2, 3.1, 1.0)
Then a.x =4.3

And a.y =-4.2

And a.z = 3.1

And a.w =1.0

And a is a point
And a is not a vector

Scenario: A tuple with w=0 is a vector
Given a « tuple(4.3, -4.2, 3.1, 0.0)
Then a.x =4.3

And ay =-4.2
And a.z =3.1

And a.w =0.0

And a is not a point
And a is a vector

You'll use this distinction a lot, so it might make sense to have
some factory functions to make it easier to create these two
types of tuples. Write two more tests, one to show that a
function point(x,y,z) creates points, and another to show that a
function vector(x,y,z) creates vectors.

features/tuples.feature

Scenario: point() creates tuples with w=1
Given p — point(4, -4, 3)
Then p = tuple(4, -4, 3, 1)

Scenario: vector() creates tuples with w=0
Given v ~ vector(4, -4, 3)
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Then v = tuple(4, -4, 3, 0)

Nice! That gives you a solid foundation for creating tuples,
points, and vectors. Next, let’s look at some of the things you
can do with them.

Comparing Floating Point Numbers

Beware of comparing floating point values using simple equivalency. Round-
off error can make two numbers that should be equivalent instead be slightly
different.

When you need to test two floating point numbers for equivalence, compare
their difference. If the absolute value of their difference is less than some
value (called EPSILON), you can consider them equal. Pseudocode for this
comparison looks like this:

constant EPSILON ~ 0.00001

function equal(a, b)
if abs(a - b) < EPSILON
return true
else
return false
end if
end function



Operations

Now that you have these tuples, you're faced with the question
of how to use them. Ultimately, these will be the bedrock of your
ray tracer—they’ll crop up in calculations everywhere, from
computing the intersection of a ray with objects in your scene to
figuring out how a particular point on a surface ought to be
shaded. But to plug these vectors and points into your
calculations, you need to implement a few basic operations on
them.

Let’s start with some familiar operations from arithmetic.

If you haven’t already, take a minute to write a function that
will compare two tuples for equality. It'll save you some
( duplication! As you do so, keep in mind the comments on
floating point comparisons in Comparing Floating Point
Numbers.

i

ADDING TUPLES

Imagine that you have a point (3,-2,5,1) and a vector (-2,3,1,0), and
you want to know where you would be if you followed the vector
from that point. The answer comes via addition—adding the
two tuples together. Go ahead and write a test that
demonstrates this, like the following:

features/tuples.feature

Scenario: Adding two tuples
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Given al — tuple(3, -2, 5, 1)
And a2 — tuple(-2, 3, 1, 0)
Then al + a2 = tuple(1, 1, 6, 1)

You make a new tuple by adding the corresponding components
of each of the operands—the x’s sum to produce the new x, y’s to

produce a new y, and so forth.

And check out how that w coordinate cooperates. You add a
point (w of 1) and a vector (w of 0), and the result has a w of 1—
another point! Similarly, you could add two vectors (w of 0) and
get a vector, because the w’s sum to 0. However, adding a point

to a point doesn’t really make sense. Try it. You'll see that you
get a tuple with a w of 2, which is neither a vector nor a point!

SUBTRACTING TUPLES

Subtracting tuples is useful, too. It’'ll come in handy when you
get to Chapter 6, Light and Shading, when you need to find the
vector that points to your light source.

Add the following test to show that subtracting tuples works by
subtracting corresponding elements of the tuples.

features/tuples.feature

Scenario: Subtracting two points
Given pl ~ point(3, 2, 1)
And p2 ~ point(5, 6, 7)
Then p1 - p2 = vector(-2, -4, -6)
Isn’t that cool? The two w components (both equal to 1) cancel
each other out, and the resulting tuple has a w of 0—a vector!

Specifically, it’s the vector pointing from p, to p;: (-2, -4, -6).

Similarly, you can subtract a vector (w of 0) from a point (w of 1)
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and get another tuple with a w of 1—a point. Conceptually, this

is just moving backward by the given vector. Add this next test
to demonstrate this.

features/tuples.feature

Scenario: Subtracting a vector from a point
Given p « point(3, 2, 1)
And v ~ vector(5, 6, 7)
Then p - v = point(-2, -4, -6)
Lastly, subtracting two vectors gives us a tuple with a w of 0—
another vector, representing the change in direction between
the two. Write another test to show that this works.

features/tuples.feature

Scenario: Subtracting two vectors
Given vl « vector(3, 2, 1)
And v2 ~ vector(5, 6, 7)

Then v1 - v2 = vector(-2, -4, -6)

As with addition, though, not every combination makes sense.
For instance, if you subtract a point (w = 1) from a vector (w =0),

you’ll end up with a negative w component, which is neither
point nor vector. Let’s look at a counterpart to subtraction next.

NEGATING TUPLES

Sometimes you’ll want to know what the opposite of some
vector is. That is to say, given a vector that points from a surface
toward a light source, what vector points from the light source
back to the surface? (You'll run into this specific case in Chapter
6, Light and Shading, as well.) Mathematically, you can get it by
subtracting the vector from the tuple (0, 0, 0, 0). Go ahead and
write a test like the following, to demonstrate this:
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features/tuples.feature

Scenario: Subtracting a vector from the zero vector
Given zero  vector(0, 0, 0)
And v « vector(1, -2, 3)

Then zero - v = vector(-1, 2, -3)
But (0, 0, 0, 0) is awkward to think about (it’s a vector, but where
is it even pointing?), and the operation itself is cuambersome to
write. You can simplify this by implementing a negate
operation, which negates each component of the tuple. Add the
following test showing the effect of negation on a tuple.

features/tuples.feature

Scenario: Negating a tuple
Given a « tuple(l, -2, 3, -4)
Then -a = tuple(-1, 2, -3, 4)

That’s pretty much how it works: (x, y, z, w) becomes (-x, -y, -z, -w).

If your language supports operator overloading, negation can
be implemented as a unary minus operator (-tuple). Otherwise,
a method (tuple.negate()) or a function (negate(tuple)) works fine.
In this book, it’s assumed that -tuple is the negation operator.

NG

SCALAR MULTIPLICATION AND DIVISION

Now let’s say you have some vector and you want to know what
point lies 3.5 times farther in that direction. (This will come up
in Chapter 5, Ray-Sphere Intersections, when you're finding
where a ray intersects a sphere.) So you lay that vector end-to-
end 3.5 times to see just how far the point is from the start, like
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in the following illustration.

t=3.5
e
— e
0_.._.—...—'—-0—.-

It turns out that multiplying the vector by 3.5 does just what you
need. The 3.5 here is a scalar value because multiplying by it
scales the vector (changes its length uniformly). To do it, you
multiply each component of the tuple by the scalar. Write these
tests to demonstrate the effect:

features/tuples.feature

Scenario: Multiplying a tuple by a scalar
Given a — tuple(l, -2, 3, -4)
Then a * 3.5 = tuple(3.5, -7, 10.5, -14)

Scenario: Multiplying a tuple by a fraction
Given a « tuple(l, -2, 3, -4)
Then a * 0.5 = tuple(0.5, -1, 1.5, -2)

Note that last test, where you multiply the tuple by 0.5. This is
essentially the same thing as dividing the tuple by 2, right? You
can always implement division with multiplication, but
sometimes it’s simpler to describe an operation as division. It

works like you’d expect—dividing each component of the tuple
by the scalar. Add the following test to demonstrate this.

features/tuples.feature

Scenario: Dividing a tuple by a scalar
Given a — tuple(l, -2, 3, -4)

Then a /2 = tuple(0.5, -1, 1.5, -2)

That’s the last of the familiar arithmetic operators. Next let’s
look at some new ones that will primarily be useful with vectors.

MAGNITUDE
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Remember, at the start of this chapter, when you read that a
vector was a value that encoded direction and distance? The
distance represented by a vector is called its magnitude, or
length. It’s how far you would travel in a straight line if you
were to walk from one end of the vector to the other. Add some
tests like the following, showing the magnitude of several
different vectors.

features/tuples.feature

Scenario: Computing the magnitude of vector(1, 0, 0)
Given v — vector(1, 0, 0)
Then magnitude(v) = 1

Scenario: Computing the magnitude of vector(0, 1, 0)
Given v « vector(0, 1, 0)
Then magnitude(v) = 1

Scenario: Computing the magnitude of vector(0, 0, 1)
Given v « vector(0, 0, 1)
Then magnitude(v) = 1

Scenario: Computing the magnitude of vector(1, 2, 3)
Given v ~ vector(1, 2, 3)
Then magnitude(v) = V14

Scenario: Computing the magnitude of vector(-1, -2, -3)
Given v — vector(-1, -2, -3)
Then magnitude(v) = V14

Pythagoras’ theorem taught us how to compute this, with some
squares and a square root:

magnide|v) = ||.|: — |'f, + 1= + |'1‘:‘

Vectors with magnitudes of 1 are called a unit vectors, and these
will be super handy. You'll use them when computing your view
matrix in Defining a View Transformation, when determining

the direction perpendicular to a surface (Computing the
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Normal on a Sphere), and even when generating the rays you
want to cast into your scene (Chapter 5, Ray-Sphere
Intersections).

You won’t always be able to start with a nice, neat, unit vector
though. Very often, in fact, you’ll be starting with a difference

between two points, and you’ll need to be able to take that and
turn it into a unit vector while preserving its direction.

Normalization to the rescue!

NORMALIZATION

Normalization is the process of taking an arbitrary vector and
converting it into a unit vector. It will keep your calculations
anchored relative to a common scale (the unit vector), which is
pretty important. If you were to skip normalizing your ray
vectors or your surface normals, your calculations would be
scaled differently for every ray you cast, and your scenes would
look terrible (if they rendered at all).

Add the following tests to your suite, showing the effect of
normalizing a couple of different vectors and also confirming
that the length of a normalized vector is 1.

features/tuples.feature

Scenario: Normalizing vector(4, 0, 0) gives (1, 0, 0)
Given v — vector(4, 0, 0)
Then normalize(v) = vector(1, 0, 0)

Scenario: Normalizing vector(1, 2, 3)
Given v — vector(1, 2, 3)
# vector(1N14, 2N14, 3N14)
Then normalize(v) = approximately vector(0.26726, 0.53452, 0.80178)
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Scenario: The magnitude of a normalized vector
Given v « vector(1, 2, 3)
When norm ~ normalize(v)
Then magnitude(norm) = 1

You normalize a tuple by dividing each of its components by its
magnitude. In pseudocode, it looks something like this:

function normalize(v)
return tuple(v.x / magnitude(v),
v.y / magnitude(v),
v.z / magnitude(v),
v.w / magnitude(v))
end function

With that, you can turn any vector (or rather, any vector with a
nonzero magnitude) into a unit vector.

DOT PRODUCT

When dealing with vectors, a dot product (also called a scalar
product, or inner product) is going to turn up when you start
intersecting rays with objects, as well as when you compute the
shading on a surface. The dot product takes two vectors and
returns a scalar value. Add this test to demonstrate the dot
product’s effect.

features/tuples.feature

Scenario: The dot product of two tuples
Given a « vector(l, 2, 3)
And b ~ vector(2, 3, 4)
Then dot(a, b) = 20

Given those two vectors, the dot product is computed as the
sum of the products of the corresponding components of each
vector. Here’s pseudocode showing what that looks like:

function dot(a, b)
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return a.x * b.x +
a.y *b.y +
a.z*b.z +
a.w *b.w

end function

The dot product can feel pretty abstract, but here’s one quick
way to internalize it: the smaller the dot product, the larger the
angle between the vectors. For example, given two unit vectors,
a dot product of 1 means the vectors are identical, and a dot
product of -1 means they point in opposite directions. More
specifically, and again if the two vectors are unit vectors, the dot
product is actually the cosine of the angle between them, which
fact will come in handy when you get to Chapter 6, Light and
Shading. If you’d like to read more about what the dot product
means and how to understand it, I recommend the following
article: http://betterexplained.com/articles/vector-calculus-
understanding-the-dot-product.

You certainly don’t need any deep understanding of the dot
product to implement it, though. (Lucky you!) For now, just
make the test pass, and then move on.

W Joe asks:
< Does the dot product need the w component?

If you've been exposed to dot products before, you might
wonder if w belongs in this computation, since the dot
product only makes sense on vectors, and all of our vectors
will have a w of .

The answer is: it depends. I've chosen to include it here
because the dot product applies to vectors of any
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dimension, not just three, and because it preserves a
certain symmetry with the other operations. Also, if you
happen to use the dot product on points instead of vectors
accidentally, keeping the w in the computation might help
you identify the bug sooner rather than later!

CROSS PRODUCT

Okay, last one. The cross product is another vector operation,
but unlike the dot product, it returns another vector instead of a
scalar, which the following test demonstrates. Go ahead and add
it to your suite.

features/tuples.feature

Scenario: The cross product of two vectors
Given a « vector(l, 2, 3)
And b ~ vector(2, 3, 4)
Then cross(a, b) = vector(-1, 2, -1)
And cross(b, a) = vector(1, -2, 1)

Note that this is specifically testing vectors, not tuples. This is
because the four-dimensional cross product is significantly
more complicated than the three-dimensional cross product,
and your ray tracer really only needs the three-dimensional
version anyway.

Also, note that if you change the order of the operands, you
change the direction of the resulting vector. Keep this in mind
as you use the cross product: order matters!

In pseudocode, the cross product of two three-dimensional
vectors comes together like this:
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function cross(a, b)
return vector(a.y b.z-a.z b.y,
a.z b.x-a.x b.z,
a.x b.y-ay b.x)
end function

You get a new vector that is perpendicular to both of the original
vectors.

What does this mean? Consider the following three mutually
perpendicular vectors, X, Y, and z.

Y = vector(0,1,0)
A

Z =vector(0,0,1)

X =vector(1,0,0)

If you take the cross product of X and Y, you get z. Similarly, Y
cross Z gets you X, and z cross X is Y. The results are always
perpendicular to the inputs.

Again, order is important here. X cross Y gives you z, but Y cross
X gives you -Z!

You’ll use this primarily when working with view
transformations (in Chapter 7, Making a Scene), but it will also
pop up when you start rendering triangles (in Chapter 15,
Triangles).



Putting It Together

As far as first steps go, this one wasn’t too bad, and it’s laid the
groundwork for some great things. You’ve got a working
implementation of points and vectors! Those things are going to
pop up everywhere. Sadly, you have no ray tracer yet to plug
your code into, but you can still have some fun with it.

Try playing with this little program, firing virtual projectiles and
seeing how far they go. It'll let you exercise the vector and point
routines you've written. Start with the following two data
structures:

e A projectile has a position (a point) and a velocity (a vector).

e An environment has gravity (a vector) and wind (a vector).

Then, add a tick(environment, projectile) function which returns a new
projectile, representing the given projectile after one unit of
time has passed. (The actual units here don’t really matter—
maybe they’re seconds, or milliseconds. Whatever. We'll just
call them “ticks.”)

In pseudocode, the tick function should do the following:

function tick(env, proj)
position « proj.position + proj.velocity
velocity « proj.velocity + env.gravity + env.wind
return projectile(position, velocity)

end function

Now, initialize a projectile and an environment. Use whatever
values you want, but these might get you started:



# projectile starts one unit above the origin.
# velocity is normalized to 1 unit/tick.
p — projectile(point(0, 1, 0), normalize(vector(1, 1, 0)))

# gravity -0.1 unit/tick, and wind is -0.01 unit/tick.

e « environment(vector(0, -0.1, 0), vector(-0.01, 0, 0))
Then, run tick repeatedly until the projectile’s y position is less
than or equal to 0. Report the projectile’s position after each
tick, and the number of ticks it takes for the projectile to hit the
ground. Try multiplying the projectile’s initial velocity by larger
and larger numbers to see how much farther the projectile goes!

Once you’ve had a chance to play with this virtual cannon a bit,
move to the next chapter. You're going to implement the visual
side of your ray tracer, the canvas onto which everything will
eventually be drawn.

Footnotes

[6] https://renderman.pixar.com

[7] https://unity3d.com

[8] http://www.povray.org
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Chapter 2

Drawing on a Canvas

Points and vectors may be fundamental to a ray tracer, but
without a way to turn them into something visual, most folks
won'’t care. It’s a good thing you’re about to implement a
canvas, then, isn’t it?

A canvas is a kind of virtual drawing board, which your ray
tracer will use to turn your scenes into images you can actually
see. In this chapter, you're going to create a canvas that
supports millions of colors, and which you can subsequently
save as an image file.

To get there, we'll talk about colors and how to represent them,
as well as some color operations that you’ll need to support.
Once you’ve got a handle on that, youll move on to the canvas
itself, and you’ll finish up with a small project to revisualize
your projectile launcher from the previous chapter.

Let’s jump right in.



Representing Colors

Each pixel on your computer monitor is a composite of three
colors: red, green, and blue. If you take those three colors and
mix them in different quantities, you get just about every other
color you can imagine, from red, yellow, and green, to cyan,
blue, and purple, and everything in between.

If you let red, green, and blue each be a value between 0 and 1
(with 0 meaning the color is entirely absent, and 1 meaning the
color is fully present), then the figure shows some possible
colors you can get by combining them.

rgb=(1,0,0) rgh=(0,0,1)

(_/ rglJ=/[D, 1,0) \ rgb=(1,0,0)
L G

rgb=(1,1,0) rgb=(0,1,1) rgb=(1,0,1)
If all components are 1, you get white. If all components are 0,

you get black.

And did you catch that? A color is a tuple, just like vectors and
points! In fact, when it comes time to make this real, it may
make sense to build your color implementation on top of your
tuple implementation, rather than starting from scratch.

One way or another, you're going to need to be able to create a
color from a (red, green, blue) tuple. Add the following test, which

does just that.

features/tuples.feature
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Scenario: Colors are (red, green, blue) tuples
Given c « color(-0.5, 0.4, 1.7)
Then c.red = -0.5
And c.green = 0.4
And c.blue = 1.7

In practice, you'll only use numbers between 0 and 1 for those
components, but don’t put any constraints on them just yet. If a
color is especially bright or dark somewhere in your scene, it
may go through multiple transformations before reaching your
virtual “eye,” dropping it to less than 0 or increasing it to
greater than 1 at any point along the way. Limiting the color
prematurely can make parts of your scene too bright or dark in
the final image.

Once that test is passing, move on. We'll talk about the different
operations that your color implementation will need to support.



Implementing Color Operations

Colors, as you'll see, tend to interact with each other. Whether
it’s a green light reflecting on a yellow surface, or a blue surface
viewed through a red glass, or some other combination of
transparency and reflection, colors can affect each other. For
example, the figure shows how different colored panes of glass
affect the colors viewed through them.

Fortunately, we can handle all of these combinations with just
four operations: adding and subtracting colors, multiplying a
color by a scalar, and multiplying a color by another color.

Here’s where colors especially show their relationship to vectors
and points. Addition, subtraction, and multiplication by a scalar
all work exactly like you saw with tuples in Chapter 1, Tuples,
Points, and Vectors. Write the following tests to emphasize this,
showing that you expect the same behavior with colors.



features/tuples.feature

Scenario: Adding colors
Given c1 ~ color(0.9, 0.6, 0.75)
And c2 ~ color(0.7, 0.1, 0.25)
Then c1 + c2 = color(1.6, 0.7, 1.0)

Scenario: Subtracting colors
Given cl ~ color(0.9, 0.6, 0.75)
And c2 ~ color(0.7, 0.1, 0.25)
Then c1 - c2 = color(0.2, 0.5, 0.5)

Scenario: Multiplying a color by a scalar
Given ¢ « color(0.2, 0.3, 0.4)
Then c * 2 = color(0.4, 0.6, 0.8)

The final color operation, multiplying a color by another color,
is used to blend two colors together. You’ll use it when (for
example) you want to know the visible color of a yellow-green
surface when illuminated by a reddish-purple light. Implement
the following test to show what you expect to happen.

features/tuples.feature

Scenario: Multiplying colors
Given cl ~ color(1, 0.2, 0.4)
And c2 ~ color(0.9, 1, 0.1)
Then c1 * c2 = color(0.9, 0.2, 0.04)

This method of blending two colors works by multiplying
corresponding components of each color to form a new color.
It’s technically called the Hadamard product (or Schur
product), but it doesn’t really matter what you call it. It just
needs to produce a new color where the new red component is
the product of the red components of the other colors, and so on
for blue and green. In pseudocode, it looks like this:

function hadamard_product(c1, c2)
r « cl.red * c2.red
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g — cl.green * c2.green

b « cl.blue * c2.blue

return color(r, g, b)
end function

Consider this test again. It says that if you were to view that
yellow-green surface (c2) under a reddish-purple light (c1), the
resulting color will seem red (because its red component, 0.9, is
largest). The following image compares that yellow-green
sphere in white light, versus reddish-purple light, and shows
visually what the test is asserting.



F

That’s all ou need to do with colors for now. Once those tests
are passing, you’ll be ready for the next step: a proper image
canvas!



Creating a Canvas

A canvas is just a rectangular grid of pixels—much like your
computer screen. Your implementation will allow its size to be
configurable, so you can specify how wide and high the canvas
ought to be.

Add the following test to your suite. It demonstrates how a
canvas is created and shows every pixel in the canvas should be
initialized to black (color(0, 0, 0)).

features/canvas.feature

Scenario: Creating a canvas
Given c « canvas(10, 20)
Then c.width = 10
And c.height = 20
And every pixel of c is color(0, 0, 0)

Pixels are drawn to the canvas by specifying a position and a
color. Write the following test, introducing a function called
write_pixel(canvas, x, y, color) and showing how it is used.

features/canvas.feature

Scenario: Writing pixels to a canvas
Given c — canvas(10, 20)
And red ~ color(1, 0, 0)

When write_pixel(c, 2, 3, red)

Then pixel_at(c, 2, 3) = red
Note that the x and y parameters are assumed to be 0-based in
this book. That is to say, x may be anywhere from 0 to width - 1
(inclusive), and y may be anywhere from 0 to height - 1

(inclusive).
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You won’t need any other methods for writing to your canvas,
since your ray tracer will work pixel-by-pixel over the entire
scene. Make those tests all pass, and then we can talk about how
to save this canvas to disk in a format that will actually be
meaningful.



Saving a Canvas

The canvas, by itself, is just an intermediate step. It might
represent an image of your scene, but you can’t look at it
directly. You can’t show it to anyone. You can’t use it to brag
about how awesome your 3D-rendered scene looks, or how
amazing your ray tracer is. To do that, you need to be able to
take the information in your canvas and write it out to a file,
which could then be viewed, emailed, tweeted, Instagrammed,
or whatever.

Let’s make that happen.

You could choose from a lot of different image formats, but
you'’re only going to implement one of them: the Portable
Pixmap (PPM) format from the Netpbm project.!! There are
several flavors of the PPM format, but the version you’ll
implement (called “plain” PPM) is straight text.

:“r Joe asks:
< How do I view a PPM file?

If you use a Mac, you're in luck, because Preview.app
(which is part of the OS) can open PPM files. From the
finder, just double-click on the PPM file you want to view,
or type open my-image.ppm from the command line.

The story is more complicated for Linux and Windows, but
not terribly so. There are a lot of tools that you can get for
either platform that will open PPM files, but you really



can’t go wrong with the GNU Image Manipulation
Program (GIMP).l'® It’s free, it’s cross-platform, it’s open-
source, and it’s well-maintained.

Every plain PPM file begins with a header consisting of three
lines of text. The following figure shows one possible header.

P3
80 40
255

The first line is the string P3 (which is the identifier, or “magic
number,” for the flavor of PPM we’re using), followed by a new
line. The second line consists of two numbers which describe
the image’s width and height in pixels. The header in the
previous figure describes an image that is 80 pixels wide, and
40 tall. The third line (255) specifies the maximum color value,
which means that each red, green, and blue value will be scaled
to lie between 0 and 255, inclusive.

Write the following test. It introduces a function called
canvas_to_ppm(canvas) which returns a PPM-formatted string. This

test will help ensure that the header is created properly.

features/canvas.feature

Scenario: Constructing the PPM header
Given c « canvas(5, 3)
When ppm ~ canvas_to_ppm(c)
Then lines 1-3 of ppm are

P3
53
255
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Immediately following this header is the pixel data, which
contains each pixel represented as three integers: red, green,
and blue. Each component should be scaled to between 0 and
the maximum color value given in the header (for example,
255), and each value should be separated from its neighbors by
a space.

Add the following test to your suite to show that the PPM pixel
data is constructed correctly for a canvas where three pixels
have been colored. Note that color components that would be
greater than 255 are limited (or clamped) to 255, and
components that would be less than 0 are clamped to o.

features/canvas.feature

Scenario: Constructing the PPM pixel data
Given c « canvas(5, 3)
And cl ~ color(1.5, 0, 0)
And c2 ~ color(0, 0.5, 0)
And c3 ~ color(-0.5, 0, 1)
When write_pixel(c, 0, 0, c1)
And write_pixel(c, 2, 1, c2)
And write_pixel(c, 4, 2, c3)
And ppm « canvas_to_ppm(c)
Then lines 4-6 of ppm are

25500000000000000
00000001280000000
00000000000000255

Notice how the first row of pixels comes first, then the second
row, and so forth. Further, each row is terminated by a new line.

In addition, no line in a PPM file should be more than 70
characters long. Most image programs tend to accept PPM
images with lines longer than that, but it’s a good idea to add
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new lines as needed to keep the lines shorter. (Just be careful to
put the new line where a space would have gone, so you don’t
split a number in half!)

Implement the following test to ensure that pixel data lines do
not exceed 70 characters.

features/canvas.feature

Scenario: Splitting long lines in PPM files

Given ¢ « canvas(10, 2)

When every pixel of c is set to color(1, 0.8, 0.6)
And ppm « canvas_to_ppm(c)

Then lines 4-7 of ppm are
255204 153 255 204 153 255 204 153 255 204 153 255 204 153 255 204
153 255 204 153 255 204 153 255 204 153 255 204 153
255204 153 255 204 153 255 204 153 255 204 153 255 204 153 255 204
153 255 204 153 255 204 153 255 204 153 255 204 153

rrrrrnr

One more thing. Some image programs (notably
ImageMagick™) won’t process PPM files correctly unless the
files are terminated by a newline character. Add the following
test to satisfy those picky consumers.

features/canvas.feature

Scenario: PPM files are terminated by a newline character
Given c « canvas(5, 3)
When ppm ~ canvas_to_ppm(c)
Then ppm ends with a newline character

That’s really all there is to PPM files. The next step is to wrap it
all up with a bow and do something fun with it! Let’s revisit the
program you wrote in the previous chapter.
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Putting It Together

In the previous chapter, you wrote a program to compute the
trajectory of a projectile, using nothing but points and vectors.
You've got a new tool, now, though!

For this challenge, you'll once again compute the trajectory of a
projectile, just as before, but this time you’ll plot its course on
your brand-new canvas. After each tick, take the coordinates of
the projectile and color the corresponding pixel on the canvas.
When the loop finishes, save your canvas to disk and view the
result. It ought to look something like the figure. The pixel sizes
have been exaggerated here, plotted as squares instead of single
dots, to make them visible in print.



As you tackle this challenge, note a few things:

1. The canvas y coordinate is upside-down compared to your world
coordinates. It’s zero at the top of your canvas, and increases as you
move down. To convert your projectile’s coordinates to canvas
coordinates, subtract the projectile’s y from the canvas’s height.

2. It’s going to be really, really easy to accidentally plot a point that is
outside the bounds of your canvas. Make sure you handle this case,
either by having the canvas ignore points outside its bounds or by
preventing your program from plotting such points in the first
place.

3. Your projectile coordinates will be floating point numbers. The
pixels on your canvas, however, are at integer coordinates. Be sure



to convert your projectile’s x and y coordinates to integers before
plotting them.

4. After your loop finishes, be sure to save your canvas to a file! That’s
the whole point of this exercise, after all.

You may need to experiment a bit to find a canvas size and
projectile velocity that complement each other. Initially, you’ll
probably find that either your projectile barely makes a blip on
your canvas, or it’ll go streaking off the side at light speed! If it
helps, the image above was made with the following settings:

start — point(0, 1, 0)
velocity — normalize(vector(1, 1.8, 0)) * 11.25
p — projectile(start, velocity)

gravity « vector(0, -0.1, 0)
wind < vector(-0.01, 0, 0)
e «— environment(gravity, wind)

¢ « canvas(900, 550)

The projectile’s velocity was normalized to a unit vector, and
then multiplied by 11.25 to increase its magnitude. That, and the
velocity vector, and the canvas size, were all determined
empirically. Experiment with different starting vectors and
speeds and see what happens!

Once you’ve played with that a bit, move on! We’re going to
switch back to math mode for the next couple of chapters to
build out some more fundamentals that you’ll need for your ray
tracer.

Footnotes
[90] http://netpbm.sourceforge.net

[10] https://www.gimp.org
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https://www.imagemagick.org

[11]


https://www.imagemagick.org

Chapter 3

Matrices

Hey, look. That shiny red sphere from before has company now.
Its friends appear to be a cigar-looking matte blue ovoid, and a
squashed green plastic thing that’s tipped toward us, as if
curious to see who’s looking.

Would it surprise you to learn that these are all just spheres?
They’ve been moved around, scaled, and rotated a bit too, but
deep down, they’re all still perfectly spherical. These

transformations are all thanks to a little thing called a matrix.



A matrix is a grid of numbers that you can manipulate as a
single unit. For example, here’s a 2x2 matrix. It has two rows
and two columns.

¥

And here’s a 3x5 matrix, with three rows and five columns:

9 1 2 ¢ 3]
0 0 2 3 1
8 7T 5 4 6

For your ray tracer, you’ll use primarily 4x4 matrices—those
with exactly four rows and four columns, like this:

i 2 0 0]
0 1 4 1
v 11 3
0 0 0 1]

In this chapter, you’ll implement a 4x4 matrix data structure
and a few general matrix operations. In the chapter after this
one, Chapter 4, Matrix Transformations, you'll build on those
operations, adding functionality to make it easier to manipulate
points and vectors (and, ultimately, shapes).

Ready? Let’s do this!



Creating a Matrix

First things first. You need to be able to describe a new matrix.
Write a test like the following, which shows that a matrix is
composed of four rows of four floating point numbers each, for
a total of sixteen numbers. It should also show how to refer to
the elements of the matrix.

features/matrices.feature

Scenario: Constructing and inspecting a 4x4 matrix
Given the following 4x4 matrix M:
[T 12 13 [4]
| 5.5| 6.5] 7.5] 8.5]
|9 |10 |11 |12 |
|13.5|14.5|15.5|16.5 |
Then M[0,0] =1
And M[0,3] =4
And M[1,0] =5.5
And M[1,2]=7.5
And M[2,2] =11
And M[3,0] = 13.5
And M[3,2] = 15.5

The first thing to notice is when talking about the individual
elements of the matrix, we specify the element’s row first, and
then its column. For example, element M, is the one at row 2,
column 3. Also note in this book, row and column indices will
be zero-based, so row 2 is actually the third row.

Later, in Inverting Matrices, you’ll need to be able to instantiate
both 2x2 and 3x3 matrices in addition to 4x4 matrices, so take a
moment to make sure you can create matrices of those sizes as
well. Add the following tests to show that your code supports
those dimensions:


http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature

features/matrices.feature

Scenario: A 2x2 matrix ought to be representable
Given the following 2x2 matrix M:

|-3] 5]
| 1]-2]

Then M[0,0] = -3
And M[0,1] =5
And M[1,0] =1

And M[1,1] =-2

Scenario: A 3x3 matrix ought to be representable
Given the following 3x3 matrix M:

|-3] 5] 0]
| 1[-2]-7]
| O] 1] 1]
Then M[0,0] =-3
And M[1,1] =-2
And M[2,2] =1

Keep your matrix implementation as simple as possible. Prefer
native types wherever you can, and avoid complicated
abstractions. Your matrices will be doing a lot of work!

=

Another critical part of your matrix implementation is matrix
comparison. You’ll be comparing matrices a lot, especially in
this chapter and the next, so it’s important to get it right. The
following two tests are not exhaustive but ought to point you in
the right direction. For example, you’ll want to make sure that
very similar numbers are handled correctly when comparing
matrices, as described in Comparing Floating Point Numbers.

features/matrices.feature
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Scenario: Matrix equality with identical matrices
Given the following matrix A:
|1]12]3]4]
|15[6]7]8]
1918]7]6]
|5[4]3]2]
And the following matrix B:
|1[2]3[4]
|1516]7]8]
|19[8]7]6]
|514]3]2]
Then A=B

Scenario: Matrix equality with different matrices
Given the following matrix A:
|1]12]3]4]
|5[6]7]8]
1918]7]6]
|5[4]3]2]
And the following matrix B:
|2[3]4]5]
1617189
|18[7]6]5]
|413]2]1]
Then A'=B

Once you've got the basic matrix data structure working, linear

algebra is your oyster. We're going to do some wild things with

matrices, but we’ll start small; let’s talk about multiplying them
together.



Multiplying Matrices

Multiplication is the tool you’ll use to perform transformations
like scaling, rotation, and translation. It’s certainly possible to
apply them one at a time, sequentially, but in practice you'll
often want to apply several transformations at once. Multiplying
them together is how you make that happen, as you’ll see when
you get to Chapter 4, Matrix Transformations.

So let’s talk about matrix multiplication. It takes two matrices
and produces another matrix by multiplying their component
elements together in a specific way. You’'ll see how that works
shortly, but start first by writing a test that describes what you
expect to happen when you multiply two 4x4 matrices together.
Don’t worry about 2x2 or 3x3 matrices here; your ray tracer
won’t need to multiply those at all.

features/matrices.feature

Scenario: Multiplying two matrices
Given the following matrix A:
|1[2]3[4]
|1516]7]8]
|19[8]7]6]
|514]3]2]
And the following matrix B:
|-2[1|2] 3]
| 312[1]-1]
| 413]6] 5]
| 112[7] 8]
Then A * B is the following 4x4 matrix:
| 20] 22| 50| 48]
| 44| 54| 114|108 |
| 40| 58110102 |
| 16] 26| 46| 42|
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Let’s look at how this is done for a single element of a matrix,
going step-by-step to find the product for element C,,
highlighted in the figure.

A B c
1 23 4 01 2 4 10101000
2345 124 8 0000
34s56|%X|24 816|= 01010000
4 567 4 816 32 00000

Element C,, is in row 1, column 0, so you need to look at row 1
of the A matrix, and column o of the B matrix, as shown in the

following figure.

A B C
2 4] [QOOO
iz e 2l |O000
4 816 [][][][]
B 16 32 [][j[][]

Then, you multiply corresponding pairs of elements together
(A0 and By, Ay; and By, Ay» and By, and A;; and B,,), and
add the products. The following figure shows how this comes
together.

A B
1 23 4 2 4 O0n0g
345 1 4 B 10101
1456|%]2 8 16 10100
56 7 4 6 32 0000

1 [ ]
: £
4
4 [l |

A xB_=2x0= 0

A xB =Jxl= J

A.xB . =4x 2= 8

-\,,IB,.}=SH4= 20

The result, here, is 31, and to find the other elements, you



perform this same process for each row-column combination of
the two matrices.

Stated as an algorithm, the multiplication of two 4x4 matrices
looks like this:

1. Let A and B be the matrices to be multiplied, and let M be the
result.

2. For every rowrin A, and every column c in B:
3. Let Mrc = Aro * Boc + Arl * Blc + Ar2 * Bzc + Arg * Bgc

As pseudocode, the algorithm might look like this:

function matrix_multiply(A, B)
M — matrix()

forrow « 0to 3
forcol « 0to 3
Milrow, col] « Alrow, 0] * B[O, col] +
Alrow, 1] * B[1, col] +
Alrow, 2] * B[2, col] +
Alrow, 3] * B[3, col]
end for
end for

return M
end function

If this all feels kind of familiar, it might be because you've
already implemented something very similar—the dot product
of two vectors. Yes, it’s true. Matrix multiplication computes the
dot product of every row-column combination in the two
matrices! Pretty cool.

Now, we're not done yet. Matrices can actually be multiplied by



tuples, in addition to other matrices. Multiplying a matrix by a
tuple produces another tuple. Start with a test again, like the
following, to express what you expect to happen when
multiplying a matrix and a tuple.

features/matrices.feature

Scenario: A matrix multiplied by a tuple

Given the following matrix A:
| 1]2]3]4]
1214]4]2]
|8]6]4]1]
10100 1]

Andb ~ tuple(l, 2, 3,1)
Then A * b = tuple(18, 24, 33, 1)

How does it work? The trick begins by treating the tuple as a
really skinny (one column!) matrix, like this:

1

(1.2,341) =

= 0l b

Four rows. One column.

It comes together just as it did when multiplying two 4x4
matrices together, but now you're only dealing with a single
column in the second “matrix.” The following figure illustrates
this, highlighting the row and column used when computing the

value of ¢,



http://media.pragprog.com/titles/jbtracer/code/features/matrices.feature

To compute the value of c,,, you consider only row 1 of matrix
A, and column 0 (the only column!) of tuple b. If you think of
that row of the matrix as a tuple, then the answer is found by
taking the dot product of that row and the other tuple:

Zxl4+dx24+x3+2x1=2

The other elements of c are computed similarly. It really is the
exact same algorithm used for multiplying two matrices, with
the sole difference being the number of columns in the second
“matrix.”

If you're feeling uncomfortable with how much magic there is in
these algorithms, check out “An Intuitive Guide to Linear
( Algebra”'?! on BetterExplained.com. It does a good job of
making sense of this stuff!

Qi

Pause here to make the tests pass that you've written so far.
Once you have them working, carry on! We're going to look at a
very special matrix, and we’ll use multiplication to understand
some of what makes it so special.



The Identity Matrix

You know that you can multiply any number by 1 and get the
original number. The number 1 is called the multiplicative
identity for that reason. Well, the identity matrix is like the
number 1, but for matrices. If you multiply any matrix or tuple
by the identity matrix, you get back the matrix or tuple you
started with.

This may sound utterly pointless right now, but consider this: if
multiplying by the identity matrix just returns the original
value, it means you can use it as the default transformation for
any object in your scene. You don’t need any special cases to tell
the difference between a shape with a transformation and a
shape without. This is, in fact, exactly what you’ll use it for when
you get to Chapter 5,

Ray-Sphere Intersections

Add the following tests to illustrate the (non-)effect of
multiplying by the identity matrix.

features/matrices.feature

Scenario: Multiplying a matrix by the identity matrix
Given the following matrix A:
[0[1] 2] 4]
|[1]2] 4] 8]
|2]4] 8|16
|4|8]16|32]|
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Then A * identity_matrix = A

Scenario: Multiplying the identity matrix by a tuple
Given a « tuple(l, 2, 3, 4)
Then identity_matrix *a =a

The identity matrix is all zeros, except for those elements along

1L O O 0
i} 1 ]
h 0 1 0

) 1

alfenfify =

the diagonal, which are each set to 1:

Again, you only need to worry about the 4x4 identity matrix for your ray
tracer. Next up, let’s look at another matrix operation.



Transposing Matrices

Matrix transposition will come in handy when you get to
Chapter 6,

Light and Shading

. You’ll use it when translating certain vectors (called normal
vectors) between object space and world space. This may sound
like science fiction, but is crucial to shading your objects
correctly.

When you transpose a matrix, you turn its rows into columns

09 3 0 0 9 1 0
9 KB 0 8 9 B X 0

trs - " ' = ’ . W
i s d e ] a2 [ 1 1 0 [ A

5 q

and its columns into rows: 0038 |08 3 8

Transposing a matrix turns the first row into the first column, the second row
into the second column, and so forth. Here’s a test that demonstrates this.

features/matrices.feature

Scenario: Transposing a matrix
Given the following matrix A:
|0[9]3]0]

1918[0]8]

|1[8]5]3]

|0]0[5]8]

Then transpose(A) is the following matrix:
|0]9]1]0]

1918180

|3]0[5]5]

|0[8]3]8]

And interestingly, the transpose of the identity matrix always gives you the
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identity matrix. Implement the following test to show that this is true.

features/matrices.feature

Scenario: Transposing the identity matrix
Given A — transpose(identity_matrix)
Then A = identity_matrix

See? Good, clean fun. Make those tests pass, and then move on. It’s time to
talk about matrix inversion.
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Inverting Matrices

If you multiply 5 by 4, you get 20. If you later decide to undo
that operation, you can multiply 20 by the inverse of 4 (or 1/4)
and get 5 again.

That’s pretty much the idea for matrices, too. If you multiply
some matrix A by another matrix B, producing C, you can
multiply C by the inverse of B to get A again. You’ll use this
approach a lot, starting in Chapter 5, Ray-Sphere Intersections,
because inverting matrices is the key to transforming and
deforming shapes in a ray tracer.

Inverting matrices is a bit more complicated than inverting
numbers, though. You'll employ a method known as cofactor
expansion. If that sounds intimidating, take heart! We'll
approach it nice and slow, one step at a time. Starting with
routines to compute the determinant of a 2x2 matrix, we’ll move
incrementally through arcane-sounding things like submatrices,
minors, and cofactors, and then come back to determinants
again. Finally, we’ll wrap up this chapter with the algorithm for
matrix inversion itself.

Let’s begin with the determinant.

DETERMINING DETERMINANTS

The determinant is a number that is derived from the elements
of a matrix. The name comes from the use of matrices to solve
systems of equations, where it’s used to determine whether or
not the system has a solution. If the determinant is zero, then
the corresponding system of equations has no solution.



You won’t be using matrices to solve equations here, though.
For you, the determinant is just one of the pieces that you'll use
to compute the inverse of a matrix.

We'll start small, building the algorithm from the bottom up.
Here’s where those 2x2 matrices come in handy, because
inverting larger matrices begins by finding the determinants of
2x2 matrices. Add the following test to your suite, to show that
your code can do just that.

features/matrices.feature

Scenario: Calculating the determinant of a 2x2 matrix
Given the following 2x2 matrix A:
| 1]5]
312
Then determinant(A) = 17

It works like this:

a b

determinant [ ] = il — b
il

Isn’t that lovely? That’s all the magic you need to find the
determinant of a 2x2 matrix! That right there is the seed for
everything else involved in inverting matrices.

You need a few more tools before you can find the determinant
of a larger matrix, though. Be patient! Make that new test pass,
and then read on. The next concept you need to implement is
that of submatrices, which will be used to help reduce larger
matrices to sizes that you know how to work with.

SPOTTING SUBMATRICES

A submatrix is what is left when you delete a single row and
column from a matrix. Because you’re always removing one row
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and one column, it effectively reduces the size of the matrix by
one. The submatrix of a 4x4 matrix is 3x3, and the submatrix of
a 3x3 matrix is 2x2. And guess what? You know how to find the
determinant of 2x2 matrices! Submatrices are the very tools
you’ll use to divide and conquer those larger beasts.

Add the following two tests that show what you get when
extracting a submatrix from a matrix. They introduce a new
function, submatrix(matrix, row, column), which returns a copy of the

given matrix with the given row and column removed.

features/matrices.feature

Scenario: A submatrix of a 3x3 matrix is a 2x2 matrix
Given the following 3x3 matrix A:
| 1[5] 0]
|-3[2] 7]
| 0]6]-3]
Then submatrix(A, 0, 2) is the following 2x2 matrix:
-312]
| 0]6]

Scenario: A submatrix of a 4x4 matrix is a 3x3 matrix
Given the following 4x4 matrix A:
6] 1] 1] 6]
|-8] 5] 8] 6]
-1 0] 8] 2]
|-7[ 1]-1] 1]
Then submatrix(A, 2, 1) is the following 3x3 matrix:
|-6] 1]6]
|-8] 8]6]
|-7[-1]1]

There’s no magic there, and, really, no math. Didn’t I tell you we
were going to take this nice and slow? Go ahead and make those
tests pass. Next up are minors.

MANIPULATING MINORS
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Okay, so you’re now acquainted with determinants and
submatrices. This is perfect, because now you have all the tools
you need to compute the minors of a 3x3 matrix. (Not quite 4x4
yet, but you're getting closer!)

The minor of an element at row i and column j is the
determinant of the submatrix at (i,j). Implement the following
test, which introduces a new function, minor(matrix, row, column).

features/matrices.feature

Scenario: Calculating a minor of a 3x3 matrix
Given the following 3x3 matrix A:
| 315/ 0]
| 2]-1]-7]
| 61-1] 5]
And B ~ submatrix(A, 1, 0)
Then determinant(B) = 25
And minor(A, 1, 0) = 25
See that? You find the submatrix at the given location, and then
compute the determinant of that submatrix. The answer is the
minor. (You have to admit: “minor” is easier to say than

“determinant of the submatrix.”)

Make that test pass, and then we’ll look at the last concept we
need to start putting this matrix inversion puzzle together.

COMPUTING COFACTORS

Cofactors are the last tool you’ll need to compute the
determinants of larger matrices. They’re minors that have
(possibly) had their sign changed. Add the following test to
demonstrate what’s expected from the cofactor. It introduces a
new function, cofactor(matrix, row, column).
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features/matrices.feature

Scenario: Calculating a cofactor of a 3x3 matrix
Given the following 3x3 matrix A:
| 3] 5] 0]
| 2]-1]-7]
| 6]-1] 5]
Then minor(A, 0, 0) = -12
And cofactor(A, 0, 0) =-12
And minor(A, 1, 0) = 25
And cofactor(A, 1, 0) = -25

So how’s that work? Well, first you compute the minor at the
given row and column. Then you consider that row and column

to determine whether or not to negate the result. The following
figure is helpful:

I+ |

If the row and column identifies a spot with a +, then the
minor’s sign doesn’t change. If the row and column identifies a
spot with a —, then you negate the minor.

Of course, you can do this without looking at a figure, too: if row
+ column is an odd number, then you negate the minor.
Otherwise, you just return the minor as is. Make that test pass
and then read on!

DETERMINING DETERMINANTS OF LARGER
MATRICES

Now that you have those three ideas ready—determinants,
minors, and cofactors—you can finally implement the
determinant of 3x3 and 4x4 matrices. (In fact, the idea
generalizes to arbitrarily large matrices, too, but for your
purposes here, you don’t need to go any higher than 4x4.)
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First, set the stage by writing the following two tests, showing
the determinant and some of the cofactors of a 3x3 and a 4x4
matrix. (Why the cofactors? Sit tight. All will be clear shortly!)

features/matrices.feature

Scenario: Calculating the determinant of a 3x3 matrix
Given the following 3x3 matrix A:
1] 2] 6]
|-5] 8[-4]
| 2] 6] 4]
Then cofactor(A, 0, 0) = 56
And cofactor(A, 0, 1) = 12
And cofactor(A, 0, 2) = -46
And determinant(A) = -196

Scenario: Calculating the determinant of a 4x4 matrix
Given the following 4x4 matrix A:
|-2]-8] 3] 5]
[-3[ 1] 7] 3]
| 1] 2]-9] 6]
-6 7] 7[-9]
Then cofactor(A, 0, 0) = 690
And cofactor(A, 0, 1) = 447
And cofactor(A, 0, 2) = 210
And cofactor(A, 0, 3) = 51
And determinant(A) = -4071

Those tests shouldn’t be passing yet. Let’s fix that.

Finding the determinant of matrices larger than 2x2 works
recursively. Consider the 3x3 matrix from the previous tests.
1 2 6]
- - = L
2 6 I.‘
To find the determinant, look at any one of the rows or columns.
It really doesn’t matter which, so let’s just choose the first row.
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1 2 6]

Then, for each of those elements, you’ll multiply the element by
its cofactor, and add the products together.

1 -56+2 12 +6--16= 1%
And that’s the determinant! The magical thing is that it doesn’t
matter which row or column you choose. It just works.

And it works for 4x4 matrices, too. Here, consider the matrix
from the test you wrote:

4 3
T ]
-1 L]

- -9

|
|
—

-3

=] b

—Li
Once again, you only need to look at a single row or column, so
let’s choose the first row.

Then, multii)ly each element by its cofactor, and add the results.

=269+ -8 - UT+3-210+ 5 -5l = =407T1

Voila! The determinant!

There’s no denying that it’s a lot to process, though. To give you
a leg up, here’s a bit of pseudocode for that algorithm:

function determinant(M)
det < 0

if M.size =2
det — MJO, 0] * M[1, 1] - M[O0, 1] * M[1, 0]

else
for column — 0 to M.size -1



det — det + M[0, column] * cofactor(M, 0, column)
end for
end if

return det
end function

Go ahead and make those tests pass. You're on the home stretch
now. With a fully functional determinant, you're ready to tackle
inversion.

IMPLEMENTING INVERSION

Okay, you're to the culmination of this whole process now.
Here’s where it all comes together! Remember, inversion is the
operation that allows you to reverse the effect of multiplying by
a matrix. It’ll be crucial to the transformation of shapes in your
ray tracer, allowing you to move shapes around, make them
bigger or smaller, rotate them, and more. It’s no overstatement
to say that without inversion, there’s no point in building
anything else!

Now, one of the tricky things about matrix inversion is that not
every matrix is invertible. Before you dive headlong into
inverting matrices, you ought to first be able to identify whether
such a task is even possible!

Add the following tests to show that your code can tell invertible
matrices from noninvertible ones.

features/matrices.feature

Scenario: Testing an invertible matrix for invertibility
Given the following 4x4 matrix A:

| 6] 4] 4] 4]

| 5151 7]6]

| 41-9]3]-7]
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| 9] 1] 7]-6|
Then determinant(A) = -2120
And A is invertible

Scenario: Testing a noninvertible matrix for invertibility
Given the following 4x4 matrix A:
|-4] 2[-2]-3]
| 9] 6] 2] 6]
| O[-5] 1]-5]
| 0] 0] 0] 0]
Then determinant(A) =0
And A is not invertible

And just as the tests suggest, the determinant is the key. If the
determinant is ever 0, the matrix is not invertible. Anything else
is okay.

Once that’s working, add the following test. It exercises a new
function called inverse(matrix), which produces the inverse of the
given matrix.

features/matrices.feature

Scenario: Calculating the inverse of a matrix
Given the following 4x4 matrix A:
|-5] 2] 6]-8]
| 1]-5] 1] 8]
| 71 71-6]-7]
| 11-3] 7] 4]
And B —~ inverse(A)
Then determinant(A) = 532
And cofactor(A, 2, 3) =-160
And B[3,2] = -160/532
And cofactor(A, 3, 2) = 105
And B[2,3] = 105/532
And B is the following 4x4 matrix:
| 0.21805| 0.45113| 0.24060 | -0.04511 |
| -0.80827 | -1.45677 | -0.44361 | 0.52068 |
| -0.07895 | -0.22368 | -0.05263 | 0.19737 |
| -0.52256 | -0.81391 | -0.30075 | 0.30639 |
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It’s no accident that the test also calculates some cofactors and
determinants—it all relates to the algorithm for inversion itself.
That algorithm consists of several steps, starting with the
construction of a matrix of cofactors. That is, you create a
matrix that consists of the cofactors of each of the original
elements:

-5 2 6 -8 16 —43 —12 —278)
1 -5 | - 290 =775 =119 =433
7 7 -6 128 —-236 -28 —160)
1

a1
. | =
-3 7 4 |-2¢0 27 105 163

Then, transpose that cofactor matrix:

16 —430 —42 —278) 116 240 128 -24]

240 -T75 119 —433)  |-430 -T15 -236 277|
128 236 =28 1600 T | —42 —119 =28 105
—24 277 L5 163 ] =278 413 -160 163)

Finally, divide each of the resulting elements by the
determinant of the original matrix.

L16 244 128 —24] 0.2 L85 045113 024060 —0.04511)

—430 -TT5 =216 27T\ . 39 = — (82T —1.45677 -044361 (0.52068 |
—-4§2 —-119 =28 1G] TET | —0.0TRG 022968 —DA002G 019737 |
-278 -41 -160 163] 05225 01391 —030075 0.30639 |

Whew! And that’s the inverse. What a ride!

While it’s certainly possible to implement this by doing exactly
what the preceding examples suggest (finding the matrix of
cofactors, and then transposing it, and so forth) you can actually
do it a bit more efficiently by combining the operations. Here’s
some pseudocode demonstrating what I mean:

function inverse(M)
fail if M is not invertible

M2 — new matrix of same size as M

for row — 0to M.size-1
for col — 0to M.size-1



¢ « cofactor(M, row, col)

# note that "col, row" here, instead of "row, col",
# accomplishes the transpose operation!
M2|[col, row] — c/ determinant(M)
end for
end for

return M2
end function

It’s important that this all be correct. Any bugs in this code will
cause you no end of headaches down the road. Add the
following two tests to give a little more coverage for your matrix

routines.

features/matrices.feature

Scenario: Calculating the inverse of another matrix

Given the following 4x4 matrix A:
| 8]-5] 9] 2]
| 715 6] 1]

-6 0] 9] 6]
[-310]-9]-4]

Then inverse(A) is the following 4x4 matrix:
| -0.15385 | -0.15385 | -0.28205 | -0.53846 |
| -0.07692 | 0.12308 | 0.02564 | 0.03077 |
| 0.35897 | 0.35897 | 0.43590 | 0.92308 |
| -0.69231 | -0.69231 | -0.76923 | -1.92308 |

Scenario: Calculating the inverse of a third matrix

Given the following 4x4 matrix A:
| 91 3] 0] 9]
|-5[-2]-6]-3]
|-41 9] 6] 4]
|-7] 6] 6] 2]

Then inverse(A) is the following 4x4 matrix:
| -0.04074 | -0.07778 | 0.14444 |-0.22222 |
| -0.07778 | 0.03333 | 0.36667 | -0.33333 |
| -0.02901 | -0.14630 | -0.10926 | 0.12963 |
| 0.17778| 0.06667 | -0.26667 | 0.33333 |
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One last thing to note about the inverse: at the beginning of this
section, you read that “if you multiply some matrix A by another
matrix B, producing C, you can multiply C by the inverse of B to
get A again.” Well, we can’t let such a statement slide by
unproven! Add one more test to show that the inverse does, in
truth, behave as described.

features/matrices.feature

Scenario: Multiplying a product by its inverse
Given the following 4x4 matrix A:
| 31-9] 7] 3]
| 3[-8] 2]-9]
|-4] 4] 4] 1]
|-6] 5]-1] 1]
And the following 4x4 matrix B:
18] 2] 2] 2]
| 3]-1] 7] O]
| 71 0 5] 4]
| 6]-2] 0] 5]
AndC -« A*B
Then C * inverse(B) = A

Make sure all of your tests are passing now. Once everything’s
green, take a deep breath and give yourself a solid pat on the
back. You just implemented one of the pillars of linear algebra—
with tests, even!
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Putting It Together

You now have 4x4 matrices with support for multiplication,
transposition, and inversion. Not bad!

Sadly, there’s not a lot related to ray tracing that you can do
with those routines just yet, but you’ll take care of that little
problem in the next chapter, Chapter 4, Matrix
Transformations. However, there’s always room for a bit of
experimentation. Before moving on, take a few minutes to
explore a little more.

1. What happens when you invert the identity matrix?

2. What do you get when you multiply a matrix by its inverse?

3. Isthere any difference between the inverse of the transpose of a
matrix, and the transpose of the inverse?

4. Remember how multiplying the identity matrix by a tuple gives you
the tuple, unchanged? Now, try changing any single element of the
identity matrix to a different number, and then multiplying it by a
tuple. What happens to the tuple?

When you’re ready, turn the page! In the next chapter you’ll use
your matrices to implement transformations, entities that will
help you position and orient the objects in your scenes.

Footnotes

[12] https://betterexplained.com/articles/linear-algebra-guide

Copyright © 2019, The Pragmatic Bookshelf.
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Chapter 4

Matrix Transformations

Awesomesauce! You're about to take the foundation of matrix
operations you implemented in the previous chapter and start
doing some practical things, like transformations, which your

ray tracer will (eventually) use to move and deform objects.
Consider the following scene.



Your ray tracer won’t be able to render those reflections until
Chapter 11, Reflection and Refraction, but the scene itself is not
really too complicated—a few colored spheres, some checkered
planes. The relevant bit here, though, is how each of those
spheres is sized and positioned. Without transformations, you’d
have to explicitly describe each sphere’s radius and location,
which would be tedious (in a decidedly trigonometric sense) to
get correct. Perhaps surprisingly, this would also increase the
complexity of your ray tracer, as you'll see in Chapter 5, Ray-
Sphere Intersections.



With transformations, though, you add each of those smaller
spheres to the scene at the origin, and then apply a series of
transformations to them: scaling, translation, and a couple of
rotations. No hairy math or tedious computations involved!

Best of all, these transformations use the matrix operations you
just polished off. We'll take a look at how to construct a matrix
to represent each of these transformations, as well as how to
chain several of them together as a single matrix.

Ready? Let’s start with translation.



Translation

Translation is a transformation that moves a point, like so.

Se®v" we

It changes the coordinates of the point by adding to or
subtracting from them. For example, if the point had an x

coordinate of 3, and you moved it 4 units in x, it would wind up
with an x coordinate of 7.

/ Joe asks:
- Can’t we just use vectors to translate points?

Well, yes, as a matter of fact, we can. You saw in Chapter 1,
Tuples, Points, and Vectors how to add a vector to a point
and thus translate the point in the direction of the vector.
This works well.

The problem with it is that it can only do translation—we
can’t use the same operation (that is, adding a vector) and
get rotation, or scaling, or shearing. What we want is a



single operation that can produce any of these
transformations and concatenate them in arbitrary order.

Matrix multiplication happens to be just such a tool.

The workhorse here will be a new translation(x,y,z) function which
should return a 4x4 translation matrix. Implement the following
test to show it in action. Don’t worry about making these next
few tests pass yet, though; I'll show you the secret sauce shortly.

features/transformations.feature

Scenario: Multiplying by a translation matrix
Given transform  translation(5, -3, 2)
And p ~ point(-3, 4, 5)
Then transform * p = point(2, 1, 7)

Further, if you take the inverse of a translation matrix, you get

another translation matrix that moves points in reverse. Add
the following test to your suite to demonstrate this.

features/transformations.feature

Scenario: Multiplying by the inverse of a translation matrix
Given transform ~ translation(5, -3, 2)
And inv « inverse(transform)
And p ~ point(-3, 4, 5)
Then inv * p = point(-8, 7, 3)

Now let’s throw a wrench into things: multiplying a translation
matrix by a vector should not change the vector! Remember, a
vector is just an arrow. Moving it around in space does not

change the direction it points. Add the following test to show
that vectors are not changed by translation:
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features/transformations.feature

Scenario: Translation does not affect vectors
Given transform ~ translation(5, -3, 2)
And v ~ vector(-3, 4, 5)
Then transform * v=v

You might wonder how you’re going to pull that off. A matrix
that affects points but not vectors? Can it really be so?

Gather round!

In Chapter 1, Tuples, Points, and Vectors, you read that the
difference between a point and a vector was just that a vector
had a 0 in its w component. This is where that feature pays
dividends. It turns out that the way a translation matrix is
constructed makes it so that a 0 in the w component of a tuple
will cause the translation to be ignored.

Let’s look at this mysterious (spoiler: not really mysterious)
translation matrix and see just how it is structured. Start with
an identity matrix t, and then add the desired x, y, and z values
to (respectively) the tys, t;5, and t,, elements, as shown in the
following figure.

1 O i)
il 1 i)

tramslation(z, . 2) = |, 0 1

L

i o i
You will find that, when multiplied by a vector, the 0 in w causes
those translation values to disappear, like magic. With a point,
though, the 1 in w has the desired effect, and causes the point to
move.

Slick!
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So that’s translation. Make those tests pass, and we’ll look at
scaling next.



Scaling

Where translation moves a point by adding to it, scaling moves
it by multiplication. When applied to an object centered at the
origin, this transformation scales all points on the object,
effectively making it larger (if the scale value is greater than 1)
or smaller (if the scale value is less than 1), as shown in the
figure.



You’'ll need a new function, called scaling(x,y,z), that returns a 4x4

translation matrix. Add the following test to demonstrate how
it’s used to scale a point.

features/transformations.feature

Scenario: A scaling matrix applied to a point
Given transform ~ scaling(2, 3, 4)
And p ~ point(-4, 6, 8)
Then transform * p = point(-8, 18, 32)

Now, unlike translation, scaling applies to vectors as well,
changing their length. Add the following test to show how
vectors are affected by scaling.

features/transformations.feature

Scenario: A scaling matrix applied to a vector
Given transform  scaling(2, 3, 4)
And v ~ vector(-4, 6, 8)
Then transform * v = vector(-8, 18, 32)

And as you might expect, multiplying a tuple by the inverse of a
scaling matrix will scale the tuple in the opposite way (shrinking

instead of growing, or vice versa). Add the following test to
show that this is so.

features/transformations.feature

Scenario: Multiplying by the inverse of a scaling matrix
Given transform ~ scaling(2, 3, 4)
And inv ~ inverse(transform)
And v ~ vector(-4, 6, 8)
Then inv * v = vector(-2, 2, 2)

To construct a scaling matrix, take an identity matrix t and

change the values at t,, t;;, and t,, to be (respectively) the x, y,
and z scaling values.


http://media.pragprog.com/titles/jbtracer/code/features/transformations.feature
http://media.pragprog.com/titles/jbtracer/code/features/transformations.feature
http://media.pragprog.com/titles/jbtracer/code/features/transformations.feature

xa O 0 0
0y O 0
L} L1 = U
0 o0 0 1

H'.i||.u;.'_ E.%.2) =

While we’re on the subject of scaling, let’s take a moment and
discuss its near cousin: reflection. Reflection is a transformation
that takes a point and reflects it—moving it to the other side of
an axis. It can be useful when you have an object in your scene
that you want to flip (or mirror) in some direction. Maybe the
model is leaning the wrong way, facing the wrong direction.
Maybe it’s a face that’s looking to the right when you want it
looking to the left. Rather than breaking out a 3D modeler and
editing the model, you can simply reflect the model across the
appropriate axis.

Reflection is essentially the same thing as scaling by a negative
value. Implement the following test, which shows how a point
can be reflected across the x axis by scaling the x component by
-1.

features/transformations.feature

Scenario: Reflection is scaling by a negative value
Given transform  scaling(-1, 1, 1)
And p « point(2, 3, 4)
Then transform * p = point(-2, 3, 4)
Just like that, the point was moved from the positive side of the
x axis, to the negative.

Make your tests pass, and then let’s move on to rotation.
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Rotation

Multiplying a tuple by a rotation matrix will rotate that tuple
around an axis. This can get complicated if you're trying to
rotate around an arbitrary line, so we’re not going to take that
route. We’re only going to deal with the simplest rotations here
—rotating around the x, y, and z axes.

Trigonometric Functions

Rotation matrices depend on the sine and cosine functions from
trigonometry. Don’t worry about dredging your high school
math memories, though. Check your implementation language
for a Math namespace, where you will usually find the functions

named sin and cos.

{4

The rotation will appear to be clockwise around the
corresponding axis when viewed along that axis, toward the
negative end. So, if you're rotating around the x axis, it will

rotate as depicted in the following figure.



¢
%
Another way to describe this is to say that rotations in your ray
tracer will obey the left-hand rule, which harks back to Left-
Handed vs. Right-Handed Coordinates: if you point the thumb
of your left hand in the direction of the axis of rotation, then the
rotation itself will follow the direction of your remaining fingers
as you curl them toward the palm of your hand.

Each of the three axes requires a different matrix to implement
the rotation, so we’ll look at them each in turn. Angles will be
given in radians, so if your math library prefers other units (like
degrees), you’ll need to adapt accordingly.

/ Joe asks:
= What are radians?

A full circle (360 degrees) consists of 2n radians, which
means a half circle (180 degrees) is n radians, and a



quarter circle (9o degrees) is m/2 radians. If you’re not
used to thinking in terms of radians, it may be helpful to
write a function to convert them from degrees. The
formula looks like this:

ile ]
-

(T h.jlll-\.l .',|l.l .|:|' | = =—
| B1)

ROTATION AROUND THE X AXIS

This first rotation matrix rotates a tuple some number of
radians around the x axis, and will be created by introducing a
new rotation_x(radians) function. Prove it works by adding the
following test, which shows off rotating a point around the x
axis.

features/transformations.feature

Scenario: Rotating a point around the x axis
Given p ~ point(0, 1, 0)
And half_quarter — rotation_x(mt/ 4)
And full_quarter ~ rotation_x(m/ 2)
Then half_quarter * p = point(0, V2/2, V2/2)
And full_quarter * p = point(0, 0, 1)

Visually, the test performs the following two rotations:
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Next, add another test showing that the inverse of this rotation
matrix simply rotates in the opposite direction.
features/transformations.feature

Scenario: The inverse of an x-rotation rotates in the opposite direction
Given p ~ point(0, 1, 0)
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And half_quarter — rotation_x(m/ 4)
And inv ~ inverse(half_quarter)
Then inv * p = point(0, V2/2, -V2/2)

The transformation matrix for rotating r radians around the x
axis is constructed like this:

| ] 0 ]
0 eosr —slnr 0O
i slnr Ccosr ]
0 ] 0 1

rolalon, r) =

Very nice. Now, on to the next axis.

ROTATION AROUND THE Y AXIS

The y axis rotation works just like the x axis rotation, only

changing the axis. Add the following test to demonstrate the
difference.

features/transformations.feature

Scenario: Rotating a point around the y axis
Given p ~ point(0, 0, 1)
And half_quarter — rotation_y(mt/4)
And full_quarter — rotation_y(m/ 2)
Then half_quarter * p = point(v2/2, 0, V2/2)
And full_quarter * p = point(1, 0, 0)

Again, visually, that rotation looks like this:
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The transformation matrix for rotating r radians around the y
axis is constructed like this:

e T ) sinr 0]
) | )

—&nr 0 coar 0
i) i i 1

rolatonylr) =
Just so. One more axis to go!

ROTATION AROUND THE Z AXIS

And last, but not least: the z axis rotation. Show that it works
just like the other rotations, by implementing the following test.

features/transformations.feature


http://media.pragprog.com/titles/jbtracer/code/features/transformations.feature

Scenario: Rotating a point around the z axis
Given p ~ point(0, 1, 0)
And half_quarter — rotation_z(n/ 4)
And full_quarter  rotation_z(n/ 2)
Then half_quarter * p = point(-vV2/2, V2/2, 0)
And full_quarter * p = point(-1, 0, 0)

And here’s the corresponding visualization:

}




This rotation may seem backward, but break out the left-hand
rule and check it out. Point your left thumb along the positive z

axis, and then curl your fingers. They curl toward the negative x
axis, just as illustrated!

Finally, the transformation matrix itself is this:

coar —sinre 0 0

alnr cosre () 1)

mtatn.lr) = {

i ] i)

i i) 0 1
That takes care of rotating a point or vector around any of our
three primary axes. Make those tests pass, and then move on.

We're going to look at one more transformation.



Shearing

A shearing (or skew) transformation has the effect of making
straight lines slanted. It’s probably the most (visually) complex
transformation that we’ll implement, though the
implementation is no more complicated than any of the others.

When applied to a tuple, a shearing transformation changes
each component of the tuple in proportion to the other two
components. So the x component changes in proportion to y and
z, y changes in proportion to x and z, and z changes in
proportion to x and y.

The following illustration shows how this works in two
dimensions. Specifically, note how differently the same
transformation affects each point in x as the y component
changes.
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This is what “changing in proportion” means: the farther the y



coordinate is from zero, the more the x value changes.

In three dimensions each component may be affected by either
of the other two components, so there are a total of six
parameters that may be used to define the shear
transformation:

X in proportion to y
e X in proportion to z
e yin proportion to x
e yin proportion to z
e zin proportion to x

e zin proportiontoy

Write the following tests, demonstrating how a point is affected
by each of these parameters. In each, notice how the coordinate
being moved moves by the amount of the other coordinate. For
instance, in this first test x is initially 2, but moving x in
proportion to y adds 1 times y (or 3) to x (2) and produces a new
x of 5.

features/transformations.feature

Scenario: A shearing transformation moves x in proportion to y
Given transform ~ shearing(1, 0, 0, 0, 0, 0)
And p « point(2, 3, 4)
Then transform * p = point(5, 3, 4)

The remaining tests work similarly, adding the two components
together to get the new component value.

features/transformations.feature
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Scenario: A shearing transformation moves x in proportion to z
Given transform ~ shearing(0, 1, 0, 0, 0, 0)
And p ~ point(2, 3, 4)
Then transform * p = point(6, 3, 4)

Scenario: A shearing transformation moves y in proportion to x
Given transform  shearing(0, 0, 1, 0, 0, 0)
And p « point(2, 3, 4)
Then transform * p = point(2, 5, 4)

Scenario: A shearing transformation moves y in proportion to z
Given transform  shearing(0, 0, 0, 1, 0, 0)
And p — point(2, 3, 4)
Then transform * p = point(2, 7, 4)

Scenario: A shearing transformation moves z in proportion to x
Given transform ~ shearing(0, 0, 0, 0, 1, 0)
And p ~ point(2, 3, 4)
Then transform * p = point(2, 3, 6)

Scenario: A shearing transformation moves z in proportion to y
Given transform  shearing(0, 0, 0, 0, 0, 1)
And p — point(2, 3, 4)
Then transform * p = point(2, 3, 7)

The transformation matrix for a shear transformation is given
in the following figure, where (for instance) xy means “x moved
in proportion to y,” and represents the amount by which to
multiply y before adding it to x.

l =y 2= 0

= l e O
shearing(xy, 2=, Y Ye. 22, 25 ) = |, . i 0
z. 2 )
i i i |

That’s the last of the transformation matrices that we’ll cover
here. Take some time now to make sure your tests are all
passing before moving on. Once you're ready, let’s talk about
how you can combine these matrices to create more complex
transformations.



Chaining Transformations

As you’ve seen, you can create transformation matrices to
translate, scale, rotate, and skew. But what if you want to do
more than one at a time?

It’s a completely reasonable expectation. Let’s say that you are
(eventually) going to render a teapot. The model you're
rendering is at the origin and is small relative to the rest of the
scene. The model is also tipped on its side. You'd like to rotate it
so it’s right-side up, scale it to a reasonable size, and then
translate it so it’s sitting on a table, instead of the floor.

You could apply each transformation in sequence, like this:

# rotate the teapot to be right-side up
A ~ rotation_x(m/ 2)
teapot — A * teapot

# next, make the teapot 5x larger
B ~ scaling(5, 5, 5)
teapot — B * teapot

# finally, move the teapot onto a table
C ~ translation(10, 5, 7)
teapot — C * teapot

But that’s just the same as this:

A  rotation_x(mt/ 2)

B ~ scaling(5, 5, 5)

C ~ translation(10, 5, 7)
teapot — C* (B (A teapot))

Or, since matrix multiplication is associative:



teapot — (C B A) * teapot

Note that the order of the multiplications is important! Matrix
multiplication is associative, but not commutative. When it
comes to matrices, A x B is not guaranteed to be the same as B x

A.

So, if you want a single matrix that rotates, and then scales, and
then translates, you can multiply the translation matrix by the
scaling matrix, and then by the rotation matrix. That is to say,
you must concatenate the transformations in reverse order to
have them applied in the order you want! Add the following
tests to demonstrate this (particularly counterintuitive) result.

features/transformations.feature

Scenario: Individual transformations are applied in sequence

Given p — point(1, 0, 1)
And A < rotation_x(mt/ 2)
And B - scaling(5, 5, 5)
And C ~ translation(10, 5, 7)

# apply rotation first

Whenp2 -« A*p

Then p2 = point(1, -1, 0)

# then apply scaling

When p3 — B * p2

Then p3 = point(5, -5, 0)

# then apply translation

When p4 —~ C *p3

Then p4 = point(15, 0, 7)

Scenario: Chained transformations must be applied in reverse order
Given p ~ point(1, 0, 1)
And A ~ rotation_x(mt/ 2)
And B ~ scaling(5, 5, 5)
And C - translation(10, 5, 7)
WhenT -« C B A
Then T * p = point(15, 0, 7)
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Fluent APIs

Depending on your implementation language, you may be able to present a more
intuitive interface for concatenating transformation matrices. A fluent API, for
instance, could let you declare your transformations in a natural order like this:

transform « identity().

rotate_x(m / 2).

scale(5, 5, 5).

translate(10, 5, 7)
The call to identity returns the identity matrix, and rotate_x(/2) is then invoked on it.
This multiplies the corresponding rotation matrix by the caller, “rotation” times
“identity,” effectively flipping the order of operations around. Each subsequent call in
this chain multiplies its matrix by the result of the previous call, eventually turning the
whole chain “inside out.”

Awesome! You now have vectors and points, and matrix
transformations. This is a fantastic foundation for the rest of
your ray tracer! Let’s find something to do with those pieces
before moving on.



Putting It Together

Here’s a program for you to write. Picture an analog clock.
There are (typically) twelve positions around the edge,
representing the hours. Got it? Okay. Your challenge is to write
a program that uses a rotation matrix to compute the positions
of those hours on the clock face, and draw a pixel onto a canvas
for each of them. The result ought to look something like this:



Here are four hints to get you started. (Feel free to stop reading




now if you want to see if you can make it work with no hints at
all!)

HINT #1

First, assume the clock is centered at the origin, point(0,0,0). Let
the origin be in the middle of your canvas.

HINT #2

Next, choose an axis to orient the clock. If, for example, it’s
oriented along the y axis and you’re looking at it face-on, then

you’re looking toward the negative end of the y axis. The
following figure shows this orientation.



|
This means twelve o’clock is on the +z axis at point(0,0,1), and

three o’clock is on the +x axis at point(1,0,0).

HINT #3

Now, rotate the twelve o’clock point around the y axis to find the

other hour positions. There are 2n radians in a circle, so each
hour is rotated 2n/12 (or n/6) radians. In pseudocode, then, it
would look something like this:

# compute y-axis rotation for hour #3



r « rotation_y(3 * n/6)

# given: position of twelve o'clock
twelve — point(0,0,1)

# compute position of three o'clock by rotating twelve o'clock
three « r * twelve

In this case, you should find that three o’clock is at point(1,0,0).

HINT #4

Decide how large the clock is to be drawn on your canvas. For
example, if your canvas is square, you might let the clock’s
radius be 3/8 the canvas’s width.

For each point that you compute, multiply the x and z

components by this radius, and then move them to the center of
your canvas by adding the coordinates of the center point. Let x

be the x coordinate of the pixel, and z be the y coordinate.

Don’t forget to save your canvas as a PPM file when you’re
done!

Once you've got that nailed down, move on. It’s time to start
intersecting rays and spheres!

Copyright © 2019, The Pragmatic Bookshelf.



Chapter 5

Ray-Sphere Intersections

Awesome news! You're all done with the foundational work, and
now you get to start on the meat of an actual ray tracer. From
here on out, each chapter will culminate in something concrete,
something visual, which will add to your growing store of eye
candy.

For this chapter, that visual bit won’t be particularly impressive.
It’ll just be a humble filled circle drawn to your canvas, like this:

Primitive? Undoubtedly! But you’ll draw it by exercising the
most basic muscle in the body of a ray tracer: ray casting.

Ray casting is the process of creating a ray, or line, and finding
the intersections of that ray with the objects in a scene. We'll
cover all of that in this chapter, using material from the
previous chapters as we go.



Let’s do this!



Creating Rays

Each ray created by your ray tracer will have a starting point
called the origin, and a vector called the direction which says
where it points. Write the following test, showing how you
create a ray and what its primary attributes should be:

features/rays.feature

Scenario: Creating and querying a ray
Given origin « point(1, 2, 3)

And direction ~ vector(4, 5, 6)
When r « ray(origin, direction)
Then r.origin = origin

And r.direction = direction

Armed with a ray’s origin and direction, you can find points that
lie any distance t along the ray. Why t? Blame the
mathematicians! It stands for time, which only makes sense
once you think of the ray’s direction vector as its speed. For
example, if the ray moves one unit every second, then the
following figure from Scalar Multiplication and Division, shows
how far the ray travels in 3.5 seconds.

t=3.5
e

—_— ——

Perform the following test, which introduces a new function
called position(ray, t). This function should compute the point at

the given distance t along the ray.

features/rays.feature

Scenario: Computing a point from a distance
Givenr ~ ray(point(2, 3, 4), vector(1, 0, 0))
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Then position(r, 0) = point(2, 3, 4)
And position(r, 1) = point(3, 3, 4)
And position(r, -1) = point(1, 3, 4)
And position(r, 2.5) = point(4.5, 3, 4)

To find the position, you multiply the ray’s direction by t to find

the total distance traveled, and then add that to the ray’s origin.
In pseudocode, it looks like this:

function position(ray, t)
return ray.origin + ray.direction * t
end function

You’'ll make good use of this in Chapter 6, Light and Shading,
when you start turning intersections into actual surface
information. It’s part of the process of computing realistic
shading for your scenes.

Make sure your tests are passing before moving on. In the next
section we’ll look at intersecting those rays with spheres.



Intersecting Rays with Spheres

We're going to make your life as simple as possible by assuming
every sphere’s origin (its center point) is situated at the world
origin (that’s point(0, 0, 0)). We'll also assume that these are all

unit spheres, with radii of 1.

If you were to cast a ray through the center of one of these
spheres, you would see the ray intersect in two places, like this:

More specifically, if the ray originates at (0, 0, -5), and passes
directly through the origin, it should intersect the sphere at (0, 0,
-1) and (0, 0, 1), 4 and 6 units (respectively) away from the ray’s
origin, like the following figure shows.
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Add the following test to demonstrate this. It introduces two
new functions: sphere, which returns a new sphere object, and
intersect(sphere, ray), which returns the collection of t values where
the ray intersects the sphere.

features/spheres.feature

Scenario: A ray intersects a sphere at two points
Givenr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And s — sphere()
When xs — intersect(s, r)
Then xs.count = 2
And xs[0] = 4.0
And xs[1] =6.0

The sphere function should return a unique value each time it is
invoked. Depending on your programming language, you might
need to pass something unique (an integer, or a string) to the
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function as the new sphere’s id. You'll add some attributes to the
sphere later in this chapter (when you start incorporating
matrix transformations), but for now it has no associated data.
Just make sure that no two invocations of sphere return the same

value.

Now, if you move your ray’s starting point 1 unit in the positive y
direction, the ray will be tangent to the sphere. It will intersect
at one point, just glancing off the edge, like this:

(o,lJo)]'lH

Implement the following test, which corresponds to this
scenario. It should instantiate a ray 1 unit farther in the y
direction, and intersect it with the same unit sphere. Even
though it truly intersects at only a single point, for simplicity’s
sake you’ll have your code return two intersections, with the
same point at each. (This will help later when determining



object overlaps, in Chapter 16, Constructive Solid Geometry
(CSG).) Assert that both intersections are at the same point.

features/spheres.feature

Scenario: A ray intersects a sphere at a tangent
Givenr ~ ray(point(0, 1, -5), vector(0, 0, 1))
And s — sphere()
When xs — intersect(s, r)
Then xs.count = 2
And xs[0] = 5.0
And xs[1] =5.0

Now move your ray’s starting point just a bit more along the
positive y direction. The ray should miss the sphere entirely,
passing above the sphere and not intersecting it at all. Write the
following test to show that this is true.

features/spheres.feature

Scenario: A ray misses a sphere
Givenr ~ ray(point(0, 2, -5), vector(0, 0, 1))
And s ~ sphere()
When xs — intersect(s, r)
Then xs.count = 0

Before making these tests pass, there are a few edge cases to
consider. For example, what happens if your ray originates
inside the sphere? Well, there should be one intersection in
front of the ray, and another behind it, as the following figure
illustrates.
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Yes, the ray actually extends behind the starting point, but let’s
not get distracted by definitions! Go ahead and write the
following test, showing that when the ray starts at the center of

a sphere, the first intersection is behind the ray’s origin, and the
second is in front of it.

features/spheres.feature

Scenario: A ray originates inside a sphere
Givenr ~ ray(point(0, 0, 0), vector(0, 0, 1))
And s — sphere()
When xs — intersect(s, r)
Then xs.count = 2
And xs[0] =-1.0
And xs[1]=1.0

Lastly, if the sphere is completely behind the ray, you should
still see two intersections—both with a negative t value. The
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following figure shows what this looks like.

gl Y —

The following test shows that this is so, with both intersections
occurring behind the ray’s origin.

features/spheres.feature

Scenario: A sphere is behind a ray
Givenr  ray(point(0, 0, 5), vector(0, 0, 1))
And s  sphere()
When xs ~ intersect(s, r)
Then xs.count = 2
And xs[0] =-6.0
And xs[1] =-4.0

Let’s take a look now at what needs to happen to make these
tests pass. To compute the intersection of a ray and a sphere
you’ll need those routines you've implemented up to this point,
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including tuple arithmetic, the dot product, and even (later in
this chapter) matrix inversion and transformations. It’s a good
thing you’ve already got those working, isn’t it?

The math behind intersecting a ray and a sphere is really quite
elegant, but for the sake of brevity we’ll skip the derivations and
jump straight to the implementation. If you really want to dig
into the math, you’ll find plenty of resources online. Check out
the “Line-sphere intersection” article on Wikipedia,!'! the “Ray-
Sphere Intersection” tutorial at Lighthouse3d,™ or the “Ray-
Sphere Intersection” post from Scratchapixel’s series on “A
Minimal Ray-Tracer.”s!

Begin the algorithm by computing the discriminant—a number
that tells you whether the ray intersects the sphere at all. In
pseudocode, the calculations look like this:

# the vector from the sphere's center, to the ray origin
# remember: the sphere is centered at the world origin
sphere_to_ray « ray.origin - point(0, 0, 0)

a « dot(ray.direction, ray.direction)
b « 2 * dot(ray.direction, sphere_to_ray)
¢ « dot(sphere_to_ray, sphere_to_ray) - 1

discriminant « b2-4*a* ¢

That discriminant value is the key. If it’s negative, then the ray

misses and no intersections occur between the sphere and the
ray.

if discriminant < 0 then
return ()
end if

Otherwise, you’ll see either one (for rays that hit the sphere at a
perfect tangent) or two intersections, but your function should



always return two in either case. For the tangent case, both
intersections will have the same t value, as mentioned earlier.
Also, make sure the intersections are returned in increasing
order, to make it easier to determine which intersections are
significant, later.

tl « (-b - V(discriminant)) / (2 * a)
t2 « (-b + V(discriminant)) / (2 * a)

return (t1, t2)

At this point, your tests should all be passing. Yay! Pat yourself
on the back, and exult in the fact you’ve implemented the heart
of an actual ray tracer!

This is only part of the solution, though. Your ray tracer will
eventually need to know more than the t values at each
intersection. Let’s look at how to keep track of that additional
information next.



Tracking Intersections

Currently, your intersect function returns a set of t values, but
imagine for a moment a beautifully complex scene, full of
spheres, cubes, cylinders, cones and dozens of creative
combinations. You cast your ray into that scene and get back a
double handful of intersections. You now know where the
intersections occurred (thanks to the t values), but you have no
idea how to draw them. What object was intersected at that
point? What color is it? What are its material properties?
Should there be a reflection or not? You just don’t know.

With the addition of one more property, you'll have the
foundation of what you need to answer those questions. You're
going to create a new data structure, called an intersection,
which will (for now) aggregate two things:

1. The t value of the intersection, and
2. The object that was intersected.

You’ll add additional properties in later chapters, but these will
suffice for now. Go ahead and add the following test to show
both how to create an intersection and how its properties are
accessed.

features/intersections.feature

Scenario: An intersection encapsulates t and object
Given s — sphere()
When i ~ intersection(3.5, s)
Thenit=3.5
And i.object =s
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You'll also need a way to aggregate these intersection objects so
you can work with multiple intersections at once. (Consider
your sphere intersection routine, which can return zero, one, or
two intersections.) Write the following test, which introduces a
new function called intersections(il, i2, ...). This should return a new

collection of the given intersection objects.

features/intersections.feature

Scenario: Aggregating intersections
Given s — sphere()

And il — intersection(1, s)

And i2 — intersection(2, s)
When xs — intersections(il, i2)
Then xs.count = 2

And xs[0].t=1

And xs[1].t =2

This list of intersections could just be an array primitive in your
implementation language, but note that you’ll be adding a
function shortly (in Identifying Hits) that operates on these lists
of intersections.

Now it’s time to break some code! Modify your existing tests so
that they assume your intersect function returns a list of these
intersection records, instead of bare t values. Also, add the
following test, which will show that the object property is being
set by intersect.

features/spheres.feature

Scenario: Intersect sets the object on the intersection
Givenr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And s ~ sphere()
When xs — intersect(s, r)
Then xs.count = 2
And xs[0].object = s
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And xs[1].object = s

Make your tests pass again by modifying your intersect function
so it creates a record for each intersection, instead of returning
the t values directly. All you need now is to be able to decide

which of all those intersections you actually care about, which
introduces the hit.



Identifying Hits

When rendering your scene, you'll need to be able to identify
which one of all the intersections is actually visible from the
ray’s origin. Some may be behind the ray, and others may be
hidden behind (or occluded by) other objects. For the sake of
discussion, we’ll call the visible intersection the hit. This is
really the only intersection that matters for most things.

The hit will never be behind the ray’s origin, since that’s
effectively behind the camera, so you can ignore all
intersections with negative t values when determining the hit. In

fact, the hit will always be the intersection with the lowest
nonnegative t value.

/ Joe asks:
= Why do I have to keep all the intersections?

You just read that you can ignore all intersections with
negative t values when determining the hit. So why keep
them around at all? Wouldn't it be easier to just not return
them from the intersect function in the first place?

Certainly. It’s a fair optimization, right up until you get to
Chapter 11, Reflection and Refraction. At that point, these
seemingly irrelevant intersections suddenly become
important! They’ll be used to help determine which shapes
contain other shapes. This will be also useful in Chapter
16, Constructive Solid Geometry (CSG), to inform how to
render collections of objects related by boolean



operations.

So, hang onto those negative t values for now! Your future
self will thank you.

Write the following tests, which introduce a function called
hit(intersections). This function returns the hit from a collection of

intersection records. Writing these tests will show how hit
should behave in a few different situations.

features/intersections.feature

Scenario: The hit, when all intersections have positive t
Given s — sphere()
And il — intersection(1, s)
And i2 — intersection(2, s)
And xs « intersections(i2, il)
When i ~ hit(xs)
Theni=il

Scenario: The hit, when some intersections have negative t
Given s — sphere()
And il  intersection(-1, s)
And i2 ~ intersection(1, s)
And xs ~ intersections(i2, il1)
When i ~ hit(xs)
Theni=i2

Scenario: The hit, when all intersections have negative t
Given s — sphere()
And il  intersection(-2, s)
And i2 ~ intersection(-1, s)
And xs « intersections(i2, il)
When i ~ hit(xs)
Then i is nothing

Scenario: The hit is always the lowest nonnegative intersection
Given s — sphere()
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And il — intersection(5, s)
And i2 ~ intersection(7, s)
And i3  intersection(-3, s)
And i4 ~ intersection(2, s)
And xs « intersections(il, i2, i3, i4)
When i ~ hit(xs)
Theni=i4
Don’t let that last test trip you up! The intersections are
intentionally given in random order; it’s up to your intersections
function to maintain a sorted list or, at the very least, sort the
list on demand. This will be important down the road when you
have more complicated scenes with multiple objects. It won’t be
feasible for each shape to manually preserve the sort order of

that intersection list.

That rounds out your suite of intersection-related functionality.
Make those tests all pass, and then let’s take a look at how to
move, resize, rotate, and deform your spheres.



Transforming Rays and Spheres

A unit sphere fixed at the origin is (at best) barely useful. You
certainly couldn’t have more than one, which makes it hard to
make any kind of scene out of them. What you want is to be able
to transform this sphere—scale it larger or smaller, move it
around, and maybe (if one side were textured differently) rotate
it a bit.

If you allow moving the sphere, though, your beautiful ray-
sphere intersection algorithm has to change, because it assumes
the sphere is always at the origin and always has a radius of 1. It
would be lovely if you could keep that assumption, while still
allowing spheres to be resized and repositioned. It would make
your implementation so much cleaner and simpler.

Well, let’s consider this. You say you want to move the sphere,
but what you really want, fundamentally, is for the distance
between the sphere and the ray’s origin to increase or decrease,
or the relationship between the ray’s direction and the sphere’s
position to change, like the two pictures shown.
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In the one on the left, the ray’s origin and the sphere are
separated by 2 units. In the one on the right, they’'ve moved
further apart. But contemplate this for a moment: did the
sphere move, or the ray? Does it even matter? Regardless of
which one moved, the distance between them increased, right?
So, here’s a crazy idea. What if, instead of moving the sphere,
you move the ray?
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(I know. It’s pretty wild.)

Want to translate your sphere away from the ray? That’s just the
same as translating the ray away from the sphere, in the
opposite direction, as the following figures show.
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In the figure on the left, the sphere is moved away from the dot
(perhaps the origin of a ray). On the right, the dot is moved

away from the sphere. In both cases, the sphere and the dot
wind up 5 units apart.

But what about scaling? What if you want to make your sphere
bigger? It turns out that this is just the same as shrinking the
distance between the ray and the sphere. It’s an inverse
relationship. You scale the ray by the inverse of how you were
wanting to scale the sphere, as in the following figure:
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Okay, but what about rotation? Surely it can’t be that simple for

something like rotation? Oh, but it can! Consider the following
figure. On the left, you see that rotating an object exposes a
different side of that object to the ray. On the right, the same
result is accomplished by rotating the ray around the object.



If you want to rotate your sphere, you rotate the ray by the
inverse of the rotation you wanted to apply to the sphere.

In other words: whatever transformation you want to apply to

the sphere, apply the inverse of that transformation to the ray,
instead. Crazy, right? But it works!

World Space vs. Object Space

Another way to think about transformation matrices is to think of them as converting
points between two different coordinate systems. At the scene level, everything is in
world space coordinates, relative to the overall world. But at the object level,
everything is in object space coordinates, relative to the object itself.

Multiplying a point in object space by a transformation matrix converts that point to
world space—scaling it, translating, rotating it, or whatever. Multiplying a point in
world space by the inverse of the transformation matrix converts that point back to
object space.

Want to intersect a ray in world space with a sphere in object space? Just convert
the ray’s origin and direction to that same object space, and you’re golden.



So, first, make sure your ray is transformable. Add the following
tests to your suite, introducing a transform(ray, matrix) function
which applies the given transformation matrix to the given ray,
and returns a new ray with transformed origin and direction.
Make sure it returns a new ray, rather than modifying the ray in
place! You need to keep the original, untransformed ray, so that
you can use it to calculate locations in world space later.

features/rays.feature

Scenario: Translating a ray
Givenr  ray(point(1, 2, 3), vector(0, 1, 0))
And m ~ translation(3, 4, 5)
When r2 — transform(r, m)
Then r2.origin = point(4, 6, 8)
And r2.direction = vector(0, 1, 0)

Scenario: Scaling a ray
Givenr  ray(point(1, 2, 3), vector(0, 1, 0))
And m  scaling(2, 3, 4)
When 12 ~ transform(r, m)
Then r2.origin = point(2, 6, 12)
And r2.direction = vector(0, 3, 0)

Notice how, in the second test, the ray’s direction vector is left
unnormalized. This is intentional, and important! Transforming
a ray has the effect of (potentially) stretching or shrinking its
direction vector. You have to leave that vector with its new
length, so that when the t value is eventually computed, it

represents an intersection at the correct distance (in world
space!) from the ray’s origin.

Pause here and make those tests pass by implementing the
transform(ray, matrix) function.
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Once your rays can be transformed, the next step is to allow a
transformation to be assigned to a sphere. Implement the
following tests to demonstrate both that a sphere has a default
transformation and that its transformation can be assigned.

features/spheres.feature

Scenario: A sphere's default transformation
Given s — sphere()
Then s.transform = identity_matrix

Scenario: Changing a sphere's transformation
Given s — sphere()
Andt < translation(2, 3, 4)
When set_transform(s, t)
Then s.transform =t

Finally, make it so that your intersect function transforms the ray
before doing the calculation. Add the following tests to illustrate
two possible scenarios.

features/spheres.feature

Scenario: Intersecting a scaled sphere with a ray
Givenr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And s ~ sphere()
When set_transform(s, scaling(2, 2, 2))
And xs « intersect(s, r)
Then xs.count = 2
And xs[0].t =3
And xs[1].t=7

Scenario: Intersecting a translated sphere with a ray
Givenr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And s ~ sphere()
When set_transform(s, translation(5, 0, 0))
And xs ~ intersect(s, r)
Then xs.count = 0

Now go and make those tests pass. You'll need to make sure the
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ray passed to intersect is transformed by the inverse of the
sphere’s transformation matrix. In pseudocode, it means adding
a line at the top of the function, like this:

function intersect(sphere, ray)
ray2  transform(ray, inverse(sphere.transform))

#...
end function

Make sure you use the new ray in the function’s other
calculations, as well.

Once everything is working, pat yourself on the back! Isn’t it
beautiful? You get to keep your lovely unit sphere, and still
deform it in all kinds of ways. You can turn it into an ellipsoid
by scaling it nonuniformly, skew it with a shear transformation,
and translate it wherever you want in a scene—all by applying
the inverse of the transformation to the ray.

It’s magical!

You still can’t render a 3D scene, but you're closer than you
were. In fact, you're getting really close. It’s time to put some of
these concepts together into something concrete, and show just
how close you are.



Putting It Together

Your final task in this chapter is to write a program that casts
rays at a sphere and draws the picture to a canvas. Any ray that
hits the sphere should result in a colored pixel (red, for
example), and any miss should be drawn in black. The result
will be a silhouette of the sphere—not three-dimensional, but
definitely round!

Here are a few hints to help you along. Stop reading at any time
if you feel like you’ve got a handle on the solution!
HINT #1

Think as if you're trying to cast the shadow of your object onto
some wall behind it, as in the following figure.






You cast each ray from some starting point toward some point
on the wall that corresponds to a position on your canvas. If the
ray intersects the sphere, a shadow is cast, which you’ll mark
with a colored pixel.

HINT #2

Figure out how far your ray’s origin is from the sphere. Also,
decide where your wall will be. Moving the ray origin closer to
the sphere will make the sphere in the drawing larger. Moving it
farther away will make the sphere smaller. Moving the wall will
do similarly. For the sake of a place to start, try these values:

# start the ray at z = -5
ray_origin — point(0, 0, -5)

# put the wall at z = 10

Waﬂ_Z ~ 10

Then decide how large your wall needs to be. Because you're
using unit spheres, the maximum y value for the sphere is going

to be 1. With that, you can extrapolate between the ray origin

and the wall to see how large the wall should be, as shown in the
figure.



So, with the wall at z = 10, it needs to be at least 6 units across in

order to capture the sphere’s entire shadow. Give yourself a bit
of margin, and call it 7. (Just assume the wall is a square.)

wall size « 7.0

HINT #3

Decide how large you want your canvas to be (in pixels). A
canvas 100 pixels on a side is probably good for starting with.
(Larger images will take exponentially longer to render.)

canvas_pixels — 100

Once you know how many pixels fit along each side of the wall,
you can divide the wall size by the number of pixels to get the
size of a single pixel (in world space units).

pixel_size — wall_size / canvas_pixels

Then, assume you’re looking directly at the center of the sphere.
Half of the wall will be to the left of that, and half to the right.
Compute that size.



half — wall size/2

Since the wall is centered around the origin (because the sphere
is at the origin), this means that this half variable describes the
minimum and maximum x and y coordinates of your wall.

HINT #4

Now that you know the origin of every ray, the dimensions of
your canvas, and the size of your wall, you can compute, cast,
and intersect rays. The following is one possible way to
approach it, in pseudocode:

canvas — canvas(canvas_pixels, canvas_pixels)
color « color(1, 0, 0) # red
shape  sphere()

# for each row of pixels in the canvas
for y — 0to canvas_pixels - 1

# compute the world y coordinate (top = +half, bottom = -half)
world_y « half - pixel_size * y

# for each pixel in the row
for x — 0to canvas_pixels - 1

# compute the world x coordinate (left = -half, right = half)
world_x ~ -half + pixel_size * x

# describe the point on the wall that the ray will target
position — point(world_x, world_y, wall_z)

r « ray(ray_origin, normalize(position - ray_origin))
XS « intersect(shape, r)

if hit(xs) is defined

write_pixel(canvas, X, y, color)
end if

end for



end for

Don’t forget to save the canvas to a file at the end!

Note the highlighted lines, where the world y coordinate is
calculated. In world space, the y coordinate increases as you go

up, and decreases as you go down. But on the canvas, the top is
at y =0, and y increases as you go down. Thus, to render the

circle correctly, you have to flip the y coordinate, which is

accomplished by subtracting it from its maximum value (the top
of the wall, or half).

If all goes well, you should see a circle, much like the following;:

Congratulations! This is the silhouette of your sphere, drawn to
your canvas one ray at a time.

Once you’ve got that much working, try deforming the sphere
with some transformations and see what happens. Here are
some ideas:

# shrink it along the y axis
shape.transform « scaling(1, 0.5, 1)

# shrink it along the x axis
shape.transform  scaling(0.5, 1, 1)



# shrink it, and rotate it!
shape.transform  rotation_z(pi / 4) * scaling(0.5, 1, 1)

# shrink it, and skew it!
shape.transform  shearing(1, 0, 0, 0, 0, 0) * scaling(0.5, 1, 1)

When you've had about as much fun as you can stand with this,
move on. A silhouette is effective, but you can do much better.

In the next chapter, you’ll add lighting and shading to make that
sphere look three-dimensional!

Footnotes
[13] https://en.wikipedia.org/wiki/Line—sphere_intersection
[14] http://www.lighthouse3d.com/tutorials/maths/ray-sphere-intersection

[15] https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-
rendering-simple-shapes/ray-sphere-intersection
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Chapter 6

Light and Shading

Hot diggity! You are unstoppable. You just drew the silhouette
of a three-dimensional sphere with nothing but some code and
math! That’s, like, level-10 wizard stuff.

Still—sad, but true!—the results are not quite what most people
think of as “3D rendered.” Time to fix that.

In this chapter, you’ll implement a model to simulate the
reflection of light from a surface, which will finally allow you to
draw that sphere and make it look three dimensional. In fact, by
the end of the chapter, you'll have rendered an image very much
like this one:



To do this, you’ll add a source of light, and then implement a shading
algorithm to approximate how brightly that light illuminates the surfaces it
shines on. It might sound complicated, but it’s not. The truth is that most ray
tracers favor approximations over physically accurate simulations, so that to
shade any point, you only need to know four vectors. These are illustrated in
the



figure

If P is where your ray intersects an object, these four vectors are defined as:
E is the eye vector, pointing from P to the origin of the ray (usually, where
the eye exists that is looking at the scene).

L is the light vector, pointing from P to the position of the light source.

N is the surface normal, a vector that is perpendicular to the surface at P.

R is the reflection vector, pointing in the direction that incoming light would
bounce, or reflect.

You already have the tools to compute the first two vectors:

To find E, you can negate the ray’s direction vector, turning it around to point
back at its origin.

To find L, you subtract P from the position of the light source, giving you the
vector pointing toward the light.

The surface normal and reflection vector, though...those are new. Before you



can use those, we need to pause and talk about how to compute them.



Surface Normals

A surface normal (or just normal) is a vector that points
perpendicular to a surface at a given point. Consider a table, as
shown in the following figure.



=

A flat surface like a table will have the same normal at every
point on its surface, as shown by the vectors labeled N. If the
table is level, the normals will be the same as “up,” but even if

we tilt the table, they’ll still be perpendicular to the table’s
surface, like the following figure shows.



Things get a little trickier when we start talking about
nonplanar surfaces (those that aren’t uniformly flat). Take the
planetoid in the following figure for example.



The three normal vectors certainly aren’t all pointing the same

direction! But each is perpendicular to the surface of the sphere
at the point where it lives.

Let’s look at how to actually compute those normal vectors.



COMPUTING THE NORMAL ON A SPHERE

Start by writing the following tests to demonstrate computing
the normal at various points on a sphere. Introduce a new
function, normal_at(sphere, point), which will return the normal on
the given sphere, at the given point. You may assume that the
point will always be on the surface of the sphere.

features/spheres.feature

Scenario: The normal on a sphere at a point on the x axis
Given s — sphere()
When n — normal_at(s, point(1, 0, 0))
Then n = vector(1, 0, 0)

Scenario: The normal on a sphere at a point on the y axis
Given s — sphere()
When n « normal_at(s, point(0, 1, 0))
Then n = vector(0, 1, 0)

Scenario: The normal on a sphere at a point on the z axis
Given s — sphere()
When n — normal_at(s, point(0, 0, 1))
Then n = vector(0, 0, 1)

Scenario: The normal on a sphere at a nonaxial point
Given s — sphere()
When n — normal_at(s, point(v3/3, V3/3, V3/3))
Then n = vector(V3/3, V3/3, V3/3)

One other feature of these normal vectors is hiding in plain
sight: they’re normalized. Add the following test to your suite,
which shows that a surface normal should always be
normalized.

features/spheres.feature
Scenario: The normal is a normalized vector

Given s — sphere()
When n — normal_at(s, point(v3/3, V3/3, V3/3))
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Then n = normalize(n)

Now, let’s make those tests pass by implementing that normal_at
function. To understand how it will work its magic, take a look
at the unit circle in the following figure. It’s centered on the
origin, and a point (presumably a point of intersection) has
been highlighted on its circumference.



[

Let’s say you want to find the normal at that highlighted point.
Draw an arrow from the origin of the circle to that point, as in
the following figure.



It turns out that this arrow—this vector!—is perpendicular to



the surface of the circle at the point where it intersects. It’s the
normal! Algorithmically speaking, you find the normal by taking
the point in question and subtracting the origin of the sphere
((0,0,0) in your case). Here it is in pseudocode:

function normal_at(sphere, p)
return normalize(p - point(0, 0, 0))
end function

(Note that, because this is a unit sphere, the vector will be
normalized by default for any point on its surface, so it’s not
strictly necessary to explicitly normalize it here.)

If only that were all there were to it! Sadly, the sphere’s
transformation matrix is going to throw a (small) wrench into
how the normal is computed. Let’s take a look at what needs to
happen for the normal calculation to compensate for a
transformation matrix.

TRANSFORMING NORMALS

Imagine you have a sphere that has been translated some
distance from the world origin. If you were to naively apply the
algorithm above to find the normal at almost any point on that
sphere, you'd find that it no longer works correctly. The figure
shows how it goes wrong in this case. On the left, the normal for
a sphere at the origin is computed. On the right, the normal is
computed for a sphere that has been moved away from the
origin.



The “normal” on the right is not remotely normalized, and is not
even pointing in the correct direction. Why? The problem is that
your most basic assumption has been broken: the sphere’s
origin is no longer at the world origin.

Write the following tests to show what ought to happen. They
demonstrate computing the normal first on a translated sphere
and then on a scaled and rotated sphere.

features/spheres.feature

Scenario: Computing the normal on a translated sphere
Given s — sphere()
And set_transform(s, translation(0, 1, 0))
When n « normal_at(s, point(0, 1.70711, -0.70711))
Then n = vector(0, 0.70711, -0.70711)

Scenario: Computing the normal on a transformed sphere
Given s — sphere()
And m < scaling(1, 0.5, 1) * rotation_z(1/5)
And set_transform(s, m)
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When n « normal_at(s, point(0, vV2/2, -V2/2))
Then n = vector(0, 0.97014, -0.24254)

These won'’t pass yet, but you’ll turn them green in just a
moment.

Remember back when we talked about World Space vs. Object
Space? It turns out that this distinction between world and
object space is part of the solution to this conundrum, too. You
have a point in world space, and you want to know the normal
on the corresponding surface in object space. What to do? Well,
first you have to convert the point from world space to object
space by multiplying the point by the inverse of the
transformation matrix, thus:

object_point ~ inverse(transform) * world_point

With that point now in object space, you can compute the
normal as before, because in object space, the sphere’s origin is
at the world’s origin. However! The normal vector you get will
also be in object space...and to draw anything useful with it
you're going to need to convert it back to world space somehow.

Now, if the normal were a point you could transform it by
multiplying it by the transformation matrix. After all, that’s
what the transformation matrix does: it transforms points from
object space to world space. And in truth, this almost works
here, too. Consider the following two images of a squashed
sphere, which has been scaled smaller in y. The normal vectors
of the one on the left have been multiplied by the
transformation matrix. The one on the right is how the sphere is
supposed to look.



THIS IS
/ NORMAL.

:

The one on the left definitely looks...off. It’s as if someone took a
picture of a regular, untransformed sphere, and squashed that,
rather than squashing the sphere itself. What’s the difference?

It all comes down to how the normal vectors are being
transformed. The following illustration shows what happens.
The sphere is scaled in y, squashing it vertically, and the

normals are multiplied by the transformation matrix.

5

As you can see, multiplying by the transformation matrix
doesn’t preserve one of the fundamental properties of normal
vectors in this case: the normal is not necessarily going to be



perpendicular to the surface after being transformed!

So how do you go about keeping the normals perpendicular to
their surface? The answer is to multiply the normal by the
inverse transpose matrix instead. So you take your
transformation matrix, invert it, and then transpose the result.
This is what you need to multiply the normal by.

world_normal  transpose(inverse(transform)) * object_normal

Be aware of two additional things here:

1. Technically, you should be finding submatrix(transform, 3, 3) (from
Spotting Submatrices) first, and multiplying by the inverse and
transpose of that. Otherwise, if your transform includes any kind of
translation, then multiplying by its transpose will wind up mucking
with the w coordinate in your vector, which will wreak all kinds of
havoc in later computations. But if you don’t mind a bit of a hack,
you can avoid all that by just setting world_normal.w to 0 after
multiplying by the 4x4 inverse transpose matrix.

2. The inverse transpose matrix may change the length of your vector,
so if you feed it a vector of length 1 (a normalized vector), you may
not get a normalized vector out! It’s best to be safe, and always
normalize the result.

In pseudocode, then, your normal_at function should look
something like the following.

function normal_at(sphere, world_point)
object_point — inverse(sphere.transform) * world_point
object_normal — object_point - point(0, 0, 0)
world_normal  transpose(inverse(sphere.transform)) * object_normal
world_normal.w « 0
return normalize(world_normal)

end function



Go ahead and pause here while you get things working to this
point. Once your tests are all green, let’s talk about how to
compute the reflection vector.



Reflecting Vectors

Imagine bouncing a ball to your dog. You toss the ball to the
ground at a point halfway between the two of you, the ball
bounces up, and your dog (if she is well trained) catches it, like
the following figure illustrates.

~

The ball’s velocity is reflected around the normal at the point
where it hits the ground. That is to say, it keeps moving forward,
but instead of falling as it does so, now it is rising. Anyone that
has ever played with a ball will know intuitively what that
means. We all know from experience which direction the ball is
likely to bounce.

Write the following two tests to reinforce that intuition. You’ll
introduce a function called reflect(in, normal), which returns the



result of reflecting the in vector around the normal vector.

This first test shows the case where a vector approaches a
normal at a 45° angle, moving at equal speed in both x and y. It
should emerge at a 45° angle, with its y component reversed.

features/tuples.feature

Scenario: Reflecting a vector approaching at 45°
Given v — vector(1, -1, 0)
And n ~ vector(0, 1, 0)
Whenr ~ reflect(v, n)
Then r = vector(1, 1, 0)

This should work regardless of the orientation of the normal
vector. For instance, if the ground were slanted at 45°, and the
ball were to fall straight down onto it, it ought to bounce away
horizontally, as the following test demonstrates.

features/tuples.feature

Scenario: Reflecting a vector off a slanted surface
Given v — vector(0, -1, 0)
And n « vector(vV2/2, V2/2, 0)
Whenr ~ reflect(v, n)
Then r = vector(1, 0, 0)

As you might expect, mathematics is the magic that makes this
work. Given two vectors in and normal, the following pseudocode

is the incantation that you need.

function reflect(in, normal)
return in - normal 2 dot(in, normal)
end function

Go ahead and make your tests all pass. Once you're ready, it’s
time to start shading things!
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The Phong Reflection Model

Many different algorithms can simulate the reflection of light,
but the one you’ll implement here is called the Phong reflection
model (named for Bui Tuong Phong, the researcher who
developed it). It simulates the interaction between three
different types of lighting:

e Ambient reflection is background lighting, or light reflected from
other objects in the environment. The Phong model treats this as a
constant, coloring all points on the surface equally.

e Diffuse reflection is light reflected from a matte surface. It depends
only on the angle between the light source and the surface normal.

e Specular reflection is the reflection of the light source itself and

results in what is called a specular highlight—the bright spot on a
curved surface. It depends only on the angle between the reflection
vector and the eye vector and is controlled by a parameter that we’ll
call shininess. The higher the shininess, the smaller and tighter the
specular highlight.

The following illustration shows the effects of each of these
attributes. The first sphere is rendered using only ambient
reflection, the second sphere uses only diffuse reflection, and
the third sphere uses only specular reflection. The last sphere
combines all three.



As you can see, by themselves they don’t do a whole lot. But
when you combine them, you get something with a lot more
potential!

The first thing you're going to need for this is a light source.
You're going to implement what is called a point light—a light
source with no size, existing at a single point in space. It is also
defined by its intensity, or how bright it is. This intensity also
describes the color of the light source.

Add the following test to demonstrate the attributes of a point
light.

features/lights.feature

Scenario: A point light has a position and intensity
Given intensity — color(1, 1, 1)
And position — point(0, 0, 0)
When light — point_light(position, intensity)
Then light.position = position
And light.intensity = intensity

The next thing you need is a structure called material that

encapsulates not just the surface color, but also the four new
attributes from the Phong reflection model: ambient, diffuse,

specular, and shininess. Each should accept a nonnegative floating
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point number. For ambient, diffuse, and specular, the typical values
are between 0 and 1. For shininess, values between 10 (very large

highlight) and 200 (very small highlight) seem to work best,
though there is no actual upper bound.

Add the following test, which introduces a material function and
shows the default values of each of the material’s attributes.

features/materials.feature

Scenario: The default material
Given m — material()
Then m.color = color(1, 1, 1)
And m.ambient = 0.1
And m.diffuse = 0.9
And m.specular = 0.9
And m.shininess = 200.0

Next, add a material property to your sphere, along with the

following tests. These show how that property is used and what
its default value should be.

features/spheres.feature

Scenario: A sphere has a default material
Given s — sphere()
When m « s.material
Then m = material()

Scenario: A sphere may be assigned a material
Given s — sphere()
And m ~ material()
And m.ambient ~ 1

When s.material — m

Then s.material = m
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Make your tests pass by implementing the point light, the material
function, and the sphere’s material property. Once you’ve got that,
we’ll bring it all together with one more function: lighting.

This lighting function is what will shade your objects so that they
appear three-dimensional. It expects five arguments: the
material itself, the point being illuminated, the light source, and
the eye and normal vectors from the Phong reflection model.
While the function is not especially complicated by itself,
several cases for the tests to consider will make sure everything
checks out. Begin by writing the following series of tests, which
will move the eye and light source around to exercise the lighting
function in different configurations.

You can assume that each of these tests shares the following
setup:

features/materials.feature

Background:
Given m ~ material()
And position — point(0, 0, 0)

For the first test, the eye is positioned directly between the light and the
surface, with the normal pointing at the eye, like this:
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In this case, you expect ambient, diffuse, and specular to all be at full
strength. This means that the total intensity should be 0.1 (the ambient value)
+ 0.9 (the diffuse value) + 0.9 (the specular value), or 1.9.

features/materials.feature

Scenario: Lighting with the eye between the light and the surface
Given eyev — vector(0, 0, -1)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 0, -10), color(1, 1, 1))

When result ~ lighting(m, light, position, eyev, normalv)

Then result = color(1.9, 1.9, 1.9)

In this next test, the surface and the light remain the same as before, but
you’ll move the eye to a point 45° off of the normal, as shown in the next
illustration.
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Here, the ambient and diffuse components should be unchanged (because the
angle between the light and normal vectors will not have changed), but the
specular value should have fallen off to (effectively) 0. Thus, the intensity
should be 0.1 + 0.9 + 0, or 1.0.

features/materials.feature

Scenario: Lighting with the eye between light and surface, eye offset 45°
Given eyev — vector(0, V2/2, -V2/2)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 0, -10), color(1, 1, 1))

When result — lighting(m, light, position, eyev, normalv)

Then result = color(1.0, 1.0, 1.0)

Next, the eye is back to being directly opposite the surface, but the light is
moved to a position 45° off of the normal. The following figure shows how
this looks.
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Because the angle between the light and normal vectors has changed, the
diffuse component becomes 0.9 x v2/2. The specular component again falls
off to 0, so the total intensity should be 0.1 + 0.9 x v2/2 + 0, or
approximately 0.7364.

features/materials.feature

Scenario: Lighting with eye opposite surface, light offset 45°
Given eyev — vector(0, 0, -1)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 10, -10), color(1, 1, 1))
When result — lighting(m, light, position, eyev, normalv)
Then result = color(0.7364, 0.7364, 0.7364)
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For this next test, the light and normal vectors are the same as the previous
test, but you’ll move the eye directly into the path of the reflection vector,

like this:

This should cause the specular component to be at full strength, with ambient
and diffuse the same as the previous test. The total intensity should therefore
be 0.1 + 0.9 x v2/2 + 0.9, or approximately 1.6364.



features/materials.feature

Scenario: Lighting with eye in the path of the reflection vector
Given eyev — vector(0, -vV2/2, -V2/2)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 10, -10), color(1, 1, 1))
When result — lighting(m, light, position, eyev, normalv)
Then result = color(1.6364, 1.6364, 1.6364)

For the final test, you move the light behind the surface, like this:
N 7
/ I N\

As the light no longer illuminates the surface, the diffuse and specular
components go to 0. The total intensity should thus be the same as the
ambient component, or 0.1.

features/materials.feature

Scenario: Lighting with the light behind the surface
Given eyev — vector(0, 0, -1)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 0, 10), color(1, 1, 1))
When result ~ lighting(m, light, position, eyev, normalv)
Then result = color(0.1, 0.1, 0.1)

So, those are the tests! Make them pass now by implementing the lighting
function. In a nutshell, it will add together the material’s ambient, diffuse,
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and specular components, weighted by the angles between the different

vectors. In (annotated) pseudocode, it looks something like this:
function lighting(material, light, point, eyev, normalv)

# combine the surface color with the light's color/intensity

effective_color — material.color * light.intensity

# find the direction to the light source
lightv — normalize(light.position - point)

# compute the ambient contribution
ambient ~ effective color * material.ambient

# light_dot_normal represents the cosine of the angle between the
# light vector and the normal vector. A negative number means the
# light is on the other side of the surface.

light_dot_normal ~ dot(lightv, normalv)

if light_dot_normal < 0

diffuse — black

specular — black

else
# compute the diffuse contribution
diffuse — effective_color material.diffuse light_dot_normal

# reflect_dot_eye represents the cosine of the angle between the

# reflection vector and the eye vector. A negative number means the
# light reflects away from the eye.

reflectv — reflect(-lightv, normalv)

reflect_dot_eye — dot(reflectv, eyev)

if reflect_dot_eye <=0

specular — black

else

# compute the specular contribution

factor — pow(reflect_dot_eye, material.shininess)
specular « light.intensity material.specular factor
end if

end if

# Add the three contributions together to get the final shading
return ambient + diffuse + specular
end function



Go ahead and make those tests all pass. Once they’re all green, you can be
confident your shading routines are working as they should, and you can
move on to the final part of this chapter: rendering a sphere with realistic
lighting!



Putting It Together

Okay. Take a look at the program you wrote at the end of the
previous chapter, the one where you drew the silhouette of a
sphere on a canvas. It’s time to revisit that and turn the
silhouette into a full-on 3D rendering. Make the following
changes to that program:

1. Assign a material to your sphere. The following material will give
you a sphere that looks like the illustrations in this chapter.

sphere.material — material()
sphere.material.color  color(1, 0.2, 1)

2. Add alight source. Here’s one possible configuration, with a white
light behind, above and to the left of the eye:
light_position — point(-10, 10, -10)

light_color < color(1, 1, 1)
light — point_light(light_position, light_color)

3. In the loop where you cast your rays, make sure you're normalizing

the ray direction. It didn’t matter before, but it does now! Also,
once you've got an intersection, find the normal vector at the hit
(the closest intersection), and calculate the eye vector.

point  position(ray, hit.t)
normal — normal_at(hit.object, point)
eye « -ray.direction

4. Finally, calculate the color with your lighting function before
applying it to the canvas.

color ~ lighting(hit.object.material, light, point, eye, normal)

The result, once you're done, should look something like the
following figure.



From there, experiment with different transformations of the
sphere. Squash it, rotate it, scale it. Try different colors, and
different material parameters. What happens when you increase
the ambient value? What if the diffuse and specular are both
low? What happens when you move the light source, or change
its intensity?

Once you've had all the fun you can stand with that, go ahead
and turn the page. Next up, it’s cameras and worlds, which will
set the stage for more complex scenes!






Chapter 7

Making a Scene

Think about this for a second. You’ve written a program from
scratch, with tests, that draws a three-dimensional object by
simulating the behavior of light. That’s awesome.

And it’s still only the beginning! More complex scenes are just
around the corner. By the end of this chapter you’ll be creating
worlds with multiple objects and using a virtual camera to
capture views of those objects from different viewpoints. Just a
few more pages and you’ll be rendering images like those in
Pierre’s gallery, here:

To get there, you’ll first implement a world—a collection of all objects in a
scene—as well as routines for intersecting that world with a ray and



computing the colors for intersections. Then you’ll build a new matrix
transformation, called the view transformation, which you’ll use to orient the
view. Lastly, you’ll implement the camera, which encapsulates the view and
provides an interface for rendering the world onto a canvas.

Ready? Go!



Building a World

The first step is to implement the world object. Think of how
much work it was to render a single sphere, and then multiply
that by dozens of objects. You begin to see what you gain by
having something that will keep track of all of those things for
you.

Initially, a world is empty, containing no objects and no light
source. Write a test like the following, demonstrating a world
function that returns just such a data structure.

features/world.feature

Scenario: Creating a world
Given w « world()
Then w contains no objects
And w has no light source

Some of the tests you’ll write in this chapter assume a default
world exists with a light source at (-10, 10, -10). This world

contains two concentric spheres, where the outermost is a unit
sphere and the innermost has a radius of 0.5. Both lie at the
origin. Add the following test to ensure that this default world is
configured correctly.

features/world.feature

Scenario: The default world
Given light — point_light(point(-10, 10, -10), color(1, 1, 1))
And s1 « sphere() with:
| material.color | (0.8, 1.0, 0.6) |
| material.diffuse |0.7 |
| material.specular | 0.2 |
And s2 — sphere() with:
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| transform | scaling(0.5, 0.5, 0.5) |
When w ~ default_world()
Then w.light = light
And w contains s1
And w contains s2

Using that default world, write a test describing the behavior of
a new intersect_world(world, ray) function, which accepts a world and
a ray, and returns the intersections. In this case, since the ray
passes through the origin (where both spheres are centered) it
should intersect each sphere twice, for a total of four
intersections.

features/world.feature

Scenario: Intersect a world with a ray
Given w « default_world()
And r ~ ray(point(0, 0, -5), vector(0, 0, 1))
When xs — intersect_world(w, 1)
Then xs.count = 4
And xs[0].t =4
And xs[1].t =4.5
And xs[2].t = 5.5
And xs[3].t =6

Make that test pass. The intersect_world function should iterate
over all of the objects that have been added to the world,
intersecting each of them with the ray, and aggregating the

intersections into a single collection. Note that for the test to
pass, intersect_world must return the intersections in sorted order.

/ Joe asks:
= Why do I have to sort the intersections?

All you're doing with the intersections at this point is
finding the hit, or the intersection with the minimum
positive t value. The list doesn’t need to be sorted just to
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accomplish that, but sorting the intersections has a few
benefits. The first is that it simplifies the tests, since it
allows you to depend on the order of the returned
intersections. The second is that when you get to Chapter
11, Reflection and Refraction, and Chapter 16,
Constructive Solid Geometry (CSG), you’'ll need to be able
to iterate over the intersections in ascending order, and
having that list already sorted will save you some effort.

Once your suite is passing again, it’s time to figure out the
shading for the nearest intersection (the “hit,” from Identifying
Hits). To help with this, you'll introduce a new function, called
prepare_computations(intersection, ray), which will return a new data
structure encapsulating some precomputed information relating
to the intersection. This will help you in later chapters (like
Chapter 11, Reflection and Refraction) by making it easier to
reuse these computations in different calculations.

Write the following test, showing that prepare_computations
precomputes the point (in world space) where the intersection
occurred, the eye vector (pointing back toward the eye, or
camera), and the normal vector.

features/intersections.feature

Scenario: Precomputing the state of an intersection
Givenr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And shape ~ sphere()
Andi « intersection(4, shape)
When comps « prepare_computations(i, r)
Then comps.t = i.t
And comps.object = i.object
And comps.point = point(0, 0, -1)
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And comps.eyev = vector(0, 0, -1)
And comps.normalv = vector(0, 0, -1)

The implementation should look familiar, using functions
you’ve already written and used elsewhere. In pseudocode, it’ll
look something like this:

function prepare_computations(intersection, ray)
# instantiate a data structure for storing some precomputed values
comps — new computations data structure

# copy the intersection's properties, for convenience
comps.t ~ intersection.t
comps.object — intersection.object

# precompute some useful values

comps.point ~ position(ray, comps.t)

comps.eyev -ray.direction

comps.normalv — normal_at(comps.object, comps.point)

return comps
end function

One other case that prepare_computations should handle for this

chapter is where the hit occurs on the inside of a shape.
Consider the following illustration, where the ray originates
inside of a sphere.

In this case, the surface normal (as currently computed) points
away from the eye. But if the normal is pointing away from the
eye, the shading algorithm from the previous chapter will color



the surface far darker than it ought to be. What to do?

Add the following two tests, which show that prepare_computations
sets a fourth attribute, inside, which will be true if the hit occurs

inside the object, and false otherwise. Notice, too, that the
normal is inverted when the intersection is inside an object, so
that the surface may be illuminated properly.

features/intersections.feature

Scenario: The hit, when an intersection occurs on the outside
Givenr  ray(point(0, 0, -5), vector(0, 0, 1))
And shape — sphere()
Andi « intersection(4, shape)
When comps « prepare_computations(i, r)
Then comps.inside = false

Scenario: The hit, when an intersection occurs on the inside
Givenr ~ ray(point(0, 0, 0), vector(0, 0, 1))
And shape — sphere()
And i ~ intersection(1, shape)
When comps « prepare_computations(i, r)
Then comps.point = point(0, 0, 1)
And comps.eyev = vector(0, 0, -1)
And comps.inside = true
# normal would have been (0, 0, 1), but is inverted!
And comps.normalv = vector(0, 0, -1)

So, how can you know—mathematically—if the normal points
away from the eye vector? Take the dot product of the two
vectors, and if the result is negative, they’re pointing in
(roughly) opposite directions.

if dot(comps.normalv, comps.eyev) < 0
comps.inside ~ true
comps.normalv — -comps.normalv
else
comps.inside — false
end if
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Once those tests are passing, you can move on to implementing
the actual shading logic. Write the following two tests which call
a new function, shade_hit(world, comps). The function ought to
return the color at the intersection encapsulated by comps, in the
given world.

features/world.feature

Scenario: Shading an intersection

Given w « default_world()
Andr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And shape - the first object in w
And i — intersection(4, shape)

When comps « prepare_computations(i, r)
And ¢ ~ shade_hit(w, comps)

Then c = color(0.38066, 0.47583, 0.2855)

Scenario: Shading an intersection from the inside

Given w < default_world()
And w.light — point_light(point(0, 0.25, 0), color(1, 1, 1))
And r < ray(point(0, 0, 0), vector(0, 0, 1))
And shape - the second object in w
Andi « intersection(0.5, shape)

When comps « prepare_computations(i, r)
And ¢ « shade_hit(w, comps)

Then c = color(0.90498, 0.90498, 0.90498)

To pass both of these tests, your shade_hit function needs to call

the lighting (from The Phong Reflection Model) function with the
intersected object’s material and the prepared computations.

In pseudocode, it should come together something like this:

function shade_hit(world, comps)
return lighting(comps.object.material,
world.light,
comps.point, comps.eyev, comps.normalv)
end function
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Supporting Multiple Light Sources

The world object described here supports only a single light source, but it's not
terribly difficult to support more than one. You would need to make sure your
shade_hit function iterates over all of the light sources, calling lighting for each one
and adding the colors together.

Be warned, though: adding multiple light sources will slow your renderer down,
especially when you get to Chapter 8, Shadows. But if you have CPU cycles to burn,
having more than one light can make some neat effects possible, like overlapping
shadows.

Now, for convenience’s sake, tie up the intersect,
prepare_computations, and shade_hit functions with a bow and call the
resulting function color_at(world, ray). It will intersect the world

with the given ray and then return the color at the resulting
intersection.

Add the following tests to demonstrate three important cases.
The first test shows that when the ray fails to intersect anything,
the color that is returned should be black.

features/world.feature

Scenario: The color when a ray misses
Given w « default_world()
Andr < ray(point(0, 0, -5), vector(0, 1, 0))
When ¢ < color_at(w, 1)
Then c = color(0, 0, 0)

This second test shows that the shading should be computed
appropriately when the ray intersects an object—in this case, the
outermost sphere in the default world.

features/world.feature

Scenario: The color when a ray hits
Given w < default_world()
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Andr < ray(point(0, 0, -5), vector(0, 0, 1))
When ¢ ~ color_at(w, 1)
Then c = color(0.38066, 0.47583, 0.2855)

The third test shows that we expect color_at to use the hit when

computing the color. Here, we put the ray inside the outer
sphere, but outside the inner sphere, and pointing at the inner
sphere. We expect the hit to be on the inner sphere, and thus
return its color.

features/world.feature

Scenario: The color with an intersection behind the ray

Given w « default_world()

And outer — the first object in w

And outer.material.ambient « 1

And inner — the second object in w

And inner.material.ambient « 1

And r < ray(point(0, 0, 0.75), vector(0, 0, -1))
When c < color_at(w, 1)
Then c = inner.material.color

Your color_at function should do the following:

1. Call intersect_world to find the intersections of the given ray with the
given world.

2. Find the hit from the resulting intersections.

3. Return the color black if there is no such intersection.

4. Otherwise, precompute the necessary values with
prepare_computations.

5. Finally, call shade_hit to find the color at the hit.

That’s all that’s needed—for now!—for the world. Make your
tests pass. Once everything is green, we’ll start talking about
how to actually make pictures from these worlds you're
constructing. The first step is a matrix called the view
transformation.
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Defining a View Transformation

Right now, all of your rendered images have been painted on a
fixed “screen” that you’ve cast rays at. This works, as you've
seen, but it’s very difficult to move that screen around. Suppose
you wanted to render a picture from some point above and to
the right of an object. How would you orient the screen so you
could still look at that object?

This is what a view transformation will do for you. It’s a
transformation matrix—like scaling, rotation, and translation—
that orients the world relative to your eye, thus allowing you to
line everything up and get exactly the shot that you need.

Now, although the transformation actually orients the world,
it’s often far easier to imagine that it moves the eye. Moving a
camera around is more intuitive than moving the world around
in front of the camera! For that reason, in this section you’ll
introduce a new function, called view_transform(from, to, up), which
pretends the eye moves instead of the world. You specify where
you want the eye to be in the scene (the from parameter), the
point in the scene at which you want to look (the to parameter),
and a vector indicating which direction is up. The function then
returns to you the corresponding transformation matrix.

Start by writing a test using this new function to describe the
world’s default orientation. The default orientation is the
matrix you get if your view parameters (from, to, and up) don’t
require anything to be scaled, rotated, or translated. In other
words, the default orientation is the identity matrix! The
following test demonstrates this and shows that the orientation



looks from the origin along the z axis in the negative direction,
with up in the positive y direction.

features/transformations.feature

Scenario: The transformation matrix for the default orientation
Given from ~ point(0, 0, 0)
And to — point(0, 0, -1)
And up ~ vector(0, 1, 0)
When t «~ view_transform(from, to, up)
Then t = identity_matrix

This means that turning around and looking in the positive z
direction is like looking in a mirror: front and back are
swapped, and left and right are swapped. The view
transformation in this case should be exactly the same as
reflecting across the z (front-to-back) and x (left-to-right) axes.
As you saw in

Scaling

, reflection is the same as scaling by a negative value, so you
would expect the view transformation here to be the same as
scaling by (-1, 1, -1), which is just what the following test
demonstrates.

features/transformations.feature

Scenario: A view transformation matrix looking in positive z direction
Given from ~ point(0, 0, 0)
And to — point(0, 0, 1)
And up ~ vector(0, 1, 0)
When t — view_transform(from, to, up)
Then t = scaling(-1, 1, -1)
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Next, add the following test, which shows that the view
transformation really does move the world and not the eye. The
test positions the eye at a point 8 units along the z axis, and
points the eye back at the origin.

features/transformations.feature

Scenario: The view transformation moves the world
Given from ~ point(0, 0, 8)
And to — point(0, 0, 0)
And up ~ vector(0, 1, 0)
When t «~ view_transform(from, to, up)
Then t = translation(0, 0, -8)

As you can see, the resulting translation moves everything
backward 8 units along the z axis, effectively pushing the world
away from an eye positioned at the origin! Wild.

Write one more test for the view transformation, this time
looking in some arbitrary direction. It should produce a matrix
that is a combination of shearing, scaling, and translation.

features/transformations.feature

Scenario: An arbitrary view transformation
Given from ~ point(1, 3, 2)
And to — point(4, -2, 8)
And up ~ vector(1, 1, 0)
When t — view_transform(from, to, up)
Then t is the following 4x4 matrix:
| -0.50709 | 0.50709 | 0.67612 | -2.36643 |
| 0.767720.60609 | 0.12122 | -2.82843 |
| -0.35857 | 0.59761 | -0.71714 | 0.00000 |
| 0.00000 | 0.00000 | 0.00000 | 1.00000 |
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Note that the up vector doesn’t need to be normalized. In fact, it

doesn’t even need to be exactly perpendicular to the viewing
direction. As you’ll see shortly, the view_transform function will

tidy that up vector, so you only have to point vaguely in the
direction you want. Isn’t that convenient?

So, how does this black magic work? Given three inputs, from, to,
and up, the algorithm goes like this:

1. Compute the forward vector by subtracting from from to. Normalize
the result.

2. Compute the left vector by taking the cross product of forward and
the normalized up vector.

3. Compute the true_up vector by taking the cross product of left and
forward. This allows your original up vector to be only
approximately up, which makes framing scenes a lot easier, since
you don’t need to personally break out a calculator to figure out the
precise upward direction.

1. With these left, true_up, and forward vectors, you can now construct
a matrix that represents the orientation transformation:

left. feft, le 1. 0

[rue g Irue_nug [ruse _uips; L1
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= forward, =forward, -=forward, 0
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» All that’s left is to append a translation to that transformation to move the
scene into place before orienting it. Multiply orientation by translation(-
from.x, -from.y, -from.z), and you’re golden!

Described as pseudocode, your view_transform function might look like this:

function view_transform(from, to, up)
forward — normalize(to - from)

upn — normalize(up)

left — cross(forward, upn)



true_up — cross(left, forward)

orientation — matrix( left.x, left.y, left.z, 0,
true_up.x, true_up.y, true_up.z, 0,
-forward.x, -forward.y, -forward.z, 0,
0,0,0,1)

return orientation * translation(-from.x, -from.y, -from.z)
end function

Once you’ve implemented that and made your tests pass, read on! You’re
ready to plug this view transformation into a virtual camera, giving you a
simpler way to look at your scenes.



Implementing a Camera

Just like a real camera, your virtual camera will let you “take
pictures” of your scene. You can move it around, zoom in and
out, and even rotate the camera upside down if that’s the shot
you want. The camera is defined by the following four
attributes:

e hsize is the horizontal size (in pixels) of the canvas that the picture
will be rendered to.

e vsize is the canvas’s vertical size (in pixels).

o field_of view is an angle that describes how much the camera can
see. When the field of view is small, the view will be “zoomed in,”
magnifying a smaller area of the scene.

e transform is a matrix describing how the world should be oriented

relative to the camera. This is usually a view transformation like
you implemented in the previous section.

Write the following test, showing how a camera is constructed
using a new camera(hsize, vsize, field_of view) function. It also shows

that the default transform for a camera is the identity matrix.

features/camera.feature

Scenario: Constructing a camera
Given hsize « 160
And vsize — 120
And field _of view « /2
When ¢ — camera(hsize, vsize, field_of_view)
Then c.hsize = 160
And c.vsize = 120
And c.field_of view = m/2
And c.transform = identity_matrix
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One of the primary responsibilities of the camera is to map the
three-dimensional scene onto a two-dimensional canvas. To do
this, you’ll make the camera do just what you’ve done in
previous exercises and place the canvas somewhere in the scene
so that rays can be projected through it. But contrary to what
you’ve done before, the camera’s canvas will always be exactly
one unit in front of the camera. As you’ll see shortly, this makes
the math a bit cleaner.

The first step is to make sure the camera knows the size (in
world-space units) of the pixels on the canvas. Add the
following two tests to show that the pixel size is calculated
correctly for a canvas with a horizontal aspect (hsize > vsize), and

one with a vertical aspect (vsize > hsize).

features/camera.feature

Scenario: The pixel size for a horizontal canvas
Given ¢ — camera(200, 125, /2)
Then c.pixel_size = 0.01

Scenario: The pixel size for a vertical canvas
Given ¢ — camera(125, 200, /2)
Then c.pixel_size = 0.01

The algorithm for computing this value goes like this:

1. You know the canvas is one unit away, and you know the angle of

the field of view. By cutting the field of view in half, you create a
right triangle, as shown in the figure.


http://media.pragprog.com/titles/jbtracer/code/features/camera.feature

.
. +
* &

"t;" field of view 4

o engle N4
The width of that half of the canvas, then, can be computed by
taking the tangent of half of the field of view. Call that value
half_view, as in the following formula.
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2. The aspect ratio is the ratio of the horizontal size of the canvas, to
its vertical size. Compute that with the following formula.
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3. Now, if the horizontal size is greater than or equal to the vertical
size (aspect > 1), then half_view is half the width of the canvas, and
half_view/aspect is half the canvas’s height.

If the vertical size is greater than the horizontal size (aspect < 1),
then half_view is instead half the height of the canvas, and half the
canvas’s width is half_view x aspect.

Call these two values half_width and half_height, respectively.
(Hang on to these half_width and half_height variables, by the way.
You’'ll need them again soon ...)

4. Finally, compute the size of a single pixel on the canvas by dividing
the full width the canvas (half_width x 2) by the horizontal size (in
pixels) of the canvas (hsize). Call this pixel_size.

(Note that the assumption here is that the pixels are square, so you
don’t actually need to compute the vertical size of the pixel—it’s
going to be the same as the horizontal size.)

In pseudocode, it should look something like this:

half_view — tan(camera.field_of_view / 2)
aspect — camera.hsize / camera.vsize

if aspect >= 1 then



camera.half width — half view
camera.half_height — half_view / aspect
else
camera.half_width — half_view * aspect
camera.half_height — half_view
end if

camera.pixel_size — (camera.half_width * 2) / camera.hsize

You’ll use the pixel_size and those half_width and half_height values
you computed to create rays that can pass through any given
pixel on the canvas. Implement the following three tests to
ensure this works. These introduce a new function,
ray_for_pixel(camera, x, y), which returns a new ray that starts at the
camera and passes through the indicated (x, y) pixel on the

canvas. The first two tests use an untransformed camera to cast
rays through the center and corner of the canvas, and the third
tries a ray with a camera that has been translated and rotated.

features/camera.feature

Scenario: Constructing a ray through the center of the canvas
Given ¢ ~ camera(201, 101, /2)
Whenr ~ ray_for_pixel(c, 100, 50)
Then r.origin = point(0, 0, 0)
And r.direction = vector(0, 0, -1)

Scenario: Constructing a ray through a corner of the canvas
Given ¢ « camera(201, 101, n/2)
Whenr — ray_for_pixel(c, 0, 0)
Then r.origin = point(0, 0, 0)
And r.direction = vector(0.66519, 0.33259, -0.66851)

Scenario: Constructing a ray when the camera is transformed
Given ¢ — camera(201, 101, n/2)
When c.transform « rotation_y(n/4) * translation(0, -2, 5)
Andr < ray_for_pixel(c, 100, 50)
Then r.origin = point(0, 2, -5)
And r.direction = vector(v2/2, 0, -V2/2)
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The Camera Transform vs. the World

Note that in the last test, the ray’s origin winds up at (0, 2, -5),

despite the camera’s transformation including a translation of

(0, -2, 5). That’s not a typo! Remember that the camera’s

' =] transformation describes how the world is moved relative to
the camera. Further, you're transforming everything by the
inverse of that transformation, so moving the world (0, -2, 5) is
effectively the same as moving the ray’s origin in the opposite
direction: (0, 2, -5).

Now, make those tests pass. The ray_for_pixel function must

compute the world coordinates at the center of the given pixel,
and then construct a ray that passes through that point.
Assuming two inputs, px (the x position of the pixel) and py (the

y position of the pixel), the pseudocode for the algorithm looks
like this:

function ray_for_pixel(camera, px, py)
# the offset from the edge of the canvas to the pixel's center
xoffset — (px + 0.5) * camera.pixel_size
yoffset — (py + 0.5) * camera.pixel_size

# the untransformed coordinates of the pixel in world space.

# (remember that the camera looks toward -z, so +x is to the *left*.)
world_x « camera.half width - xoffset

world_y ~ camera.half_height - yoffset

# using the camera matrix, transform the canvas point and the origin,
# and then compute the ray's direction vector.

# (remember that the canvas is at z=-1)

pixel — inverse(camera.transform) * point(world_x, world_y, -1)
origin « inverse(camera.transform) * point(0, 0, 0)



direction — normalize(pixel - origin)

return ray(origin, direction)
end function

Okay, one more function and you’ll be finished with the camera.
The last bit to implement is the render(camera, world) function,

which uses the camera to render an image of the given world.

Add the following test to your suite. It’s a nonrigorous
demonstration of how the render function ought to work. It
renders the default world with a camera and then makes sure
that the pixel in the very middle of the resulting canvas is the
expected color.

features/camera.feature

Scenario: Rendering a world with a camera

Given w « default_world()
And ¢ « camera(11, 11, /2)
And from « point(0, 0, -5)
And to ~ point(0, 0, 0)
And up ~ vector(0, 1, 0)
And c.transform ~ view_transform(from, to, up)

When image — render(c, w)

Then pixel_at(image, 5, 5) = color(0.38066, 0.47583, 0.2855)

You'll probably find that the implementation of this function
looks a lot like code you've already written. When you rendered
an image at the end of Chapter 5, Ray-Sphere Intersections, you
created a canvas and cast a ray through each of its pixels,
coloring the pixels with the colors of the corresponding
intersections. That’s exactly what this function will do, except
instead of computing the location of each pixel, you'll let your
new ray_for_pixel function do the work.

In pseudocode, it looks like this:
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function render(camera, world)
image — canvas(camera.hsize, camera.vsize)

fory « 0to camera.vsize - 1
for x — 0to camera.hsize - 1
ray — ray_for_pixel(camera, x, y)
color — color_at(world, ray)
write_pixel(image, X, y, color)
end for
end for

return image
end function

Go ahead and make sure all of your tests are passing. Once
everything works, let’s wrap up this chapter with a small project
that uses your new world and camera code.



Putting It Together

Look back at the program you wrote at the end of the previous
chapter. It’s time to clean that up, taking advantage of the world
and camera that you’ve just written and adding a few more
spheres to make the scene more interesting.

Here’s one example of what you might build:




This was constructed from six spheres, arranged as follows:

1. The floor is an extremely flattened sphere with a matte texture.

floor — sphere()

floor.transform  scaling(10, 0.01, 10)
floor.material — material()
floor.material.color — color(1, 0.9, 0.9)
floor.material.specular — 0

2. The wall on the left has the same scale and color as the floor, but is
also rotated and translated into place.

left_wall — sphere()

left_wall.transform ~ translation(0, 0, 5) *
rotation_y(-m/4) * rotation_x(m/2) *
scaling(10, 0.01, 10)

left_wall.material — floor.material

Note the order in which the transformations are multiplied: the
wall needs to be scaled, then rotated in x, then rotated in y, and
lastly translated, so the transformations are multiplied in the
reverse order!

3. The wall on the right is identical to the left wall, but is rotated the
opposite direction in y.

right_wall « sphere()

right_wall.transform ~ translation(0, 0, 5) *
rotation_y(m/4) * rotation_x(m/2) *
scaling(10, 0.01, 10)

right_wall.material — floor.material

4. The large sphere in the middle is a unit sphere, translated upward
slightly and colored green.

middle — sphere()

middle.transform  translation(-0.5, 1, 0.5)
middle.material — material()
middle.material.color « color(0.1, 1, 0.5)
middle.material.diffuse — 0.7
middle.material.specular —~ 0.3

5. The smaller green sphere on the right is scaled in half.



right — sphere()

right.transform ~ translation(1.5, 0.5, -0.5) * scaling(0.5, 0.5, 0.5)
right.material — material()

right.material.color « color(0.5, 1, 0.1)

right.material.diffuse — 0.7

right.material.specular — 0.3

1. The smallest sphere is scaled by a third, before being translated.

left — sphere()

left.transform «~ translation(-1.5, 0.33, -0.75) * scaling(0.33, 0.33,
0.33)

left.material — material()

left.material.color — color(1, 0.8, 0.1)

left.material.diffuse — 0.7

left.material.specular — 0.3

The light source is white, shining from above and to the left:

world.light_source ~ point_light(point(-10, 10, -10), color(1, 1, 1))

And the camera is configured like so:

camera — camera(100, 50, 1/3)

camera.transform ~ view_transform(point(0, 1.5, -5),
point(0, 1, 0),
vector(0, 1, 0))

# render the result to a canvas.
canvas  render(camera, world)

Experiment with other colors and material properties. Try
deforming the spheres with scaling, rotation, and shearing
transforms. Add more spheres. Move the camera around, try
different fields of view, and see what happens when you change
the direction of the up vector!



You’ll probably find that your renderer is slow, so stick with

, smaller resolutions while experimenting. Save the high-

-—| resolution renders for final versions of your scene, when you’ve
got everything arranged and lit just how you want it, and can
afford to wait ten or fifteen minutes (or more!) for your
program to slog through a million pixels or so.

Once you're done playing with that, though, turn the page.
You're about to add support for shadows to your renderer,
which will do wonders for the realism of your scenes.
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Chapter 8

Shadows

Your ray tracer is really starting to come together. Just look at
it! You've got spheres, realistic shading, a powerful camera, and
a world that supports scenes with many objects.

It’s a pity those objects don’t cast shadows, though. Shadows
add a delightful dash of realism to a scene. Check out the
following figure which shows the same scene both with and
without shadows:



Your brain uses those shadows as cues for depth perception.



Without shadows, the image looks artificial and shallow, and
that will never do.

Thus, the time has come to add shadows, and the best part is
that you've already written most of the infrastructure to support
this. The first step is to adjust your lighting function to handle the
case where a point is in shadow. Then you’ll implement a new
method for determining whether a point is in shadow or not,
and last you’ll tie those pieces together so your ray tracer
actually renders the shadows.

Let’s dig into it!



Lighting in Shadows

Given some point, you can know that it lies in shadow if there is
another object sitting between it and the light source, as shown

in the following figure.




The light source is unable to contribute anything to that point.
Take a moment and recall how your lighting function works, from

The Phong Reflection Model

. The diffuse component relies on the vector to the light source,
and the specular component depends on the reflection vector.
Since both components have a dependency on the light source,
the lighting function should ignore them when the point is in

shadow and use only the ambient component.

Add the following test to the others you wrote for the lighting
function. It’s identical to the one titled

“Lighting with the eye between the light
and the surface”

, where the specular and diffuse components were both at their
maximum values, but this time you’re going to pass a new
argument to the lighting function indicating that the point is in
shadow. It should cause the diffuse and specular components to
be ignored, resulting in the ambient value alone contributing to
the lighting.

(Recall that the m and position variables being passed to the lighting
function are defined in the

“Background” block

features/materials.feature
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Scenario: Lighting with the surface in shadow

Given eyev — vector(0, 0, -1)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 0, -10), color(1, 1, 1))

And in_shadow « true

When result — lighting(m, light, position, eyev, normalv, in_shadow)
Then result = color(0.1, 0.1, 0.1)

You may need to fix your other tests to accommodate the addition of that
new parameter. Go ahead and address that, and then make this new test pass
as well by making your lighting function ignore the specular and diffuse
components when in_shadow is true.

Once things are all passing again, let’s teach your ray tracer how to tell when
a point is in shadow.



Testing for Shadows

A ray tracer computes shadows by casting a ray, called a
shadow ray, from each point of intersection toward the light
source. If something intersects that shadow ray between the
point and the light source, then the point is considered to be in
shadow. You’re going to write a new function, is_shadowed(world,
point), which will do just this.

Implement the following four tests, which demonstrate four
different scenarios. Each assumes the existence of the default

world that was defined in Building a World.

In the first test, the world is set up like the following figure.
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Nothing at all lies along the line connecting the point and the
light source, and the point should therefore not be in shadow.

features/world.feature

Scenario: There is no shadow when nothing is collinear with point and light

Given w « default_world()
And p ~ point(0, 10, 0)
Then is_shadowed(w, p) is false

In the second test, the point is placed on the far side of the
default world’s spheres, putting them between it and the light

source, like this:
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The point should be in the shadow cast by the spheres.

features/world.feature

Scenario: The shadow when an object is between the point and the light
Given w « default_world()

And p « point(10, -10, 10)
Then is_shadowed(w, p) is true

The next test positions the point so the light lies between it and
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the spheres.
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Once again, the point should not be in shadow, because nothing
lies between the point and the light.

features/world.feature

Scenario: There is no shadow when an object is behind the light
Given w < default_world()
And p ~ point(-20, 20, -20)
Then is_shadowed(w, p) is false
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The last test is similar, but it positions the point to lie between
the light and the spheres, like this:
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And again, even in this configuration nothing lies between the
light and the point, so the point is still not shadowed.

features/world.feature

Scenario: There is no shadow when an object is behind the point
Given w < default_world()
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And p « point(-2, 2, -2)
Then is_shadowed(w, p) is false

The algorithm for is_shadowed goes like this:

1. Measure the distance from point to the light source by subtracting
point from the light position, and taking the magnitude of the
resulting vector. Call this distance.

2. Create a ray from point toward the light source by normalizing the
vector from step 1.

3. Intersect the world with that ray.

4. Check to see if there was a hit, and if so, whether t is less than
distance. If so, the hit lies between the point and the light source,
and the point is in shadow.

In pseudocode it might look like this:

function is_shadowed(world, point)
v « world.light.position - point
distance — magnitude(v)
direction — normalize(v)

r — ray(point, direction)
intersections  intersect_world(world, r)

h ~ hit(intersections)
if h is present and h.t < distance
return true
else
return false
end if
end function

Recall from Identifying Hits, that the hit function returns the

intersection with the lowest nonnegative t value. Thus, the hit’s t

will never be negative, so you don’t need to worry about
checking for intersections that occur behind the point.



Implement that function, make those tests pass, and then move
on. Just one more thing needs changing to actually render those
shadows!



Rendering Shadows

The final bit to actually render the shadows requires a small
change to your shade_hit function from Building a World. You
need to check whether the point is in shadow or not, and then
pass that state to your lighting function.

Add the following test to those that you wrote for the shade_hit
function. To demonstrate the case where some object is
shadowing the point of intersection, it creates a world and two
spheres, and positions a light so that the second sphere is in the
shadow of the first. Then, a ray and an intersection are created
such that the point of intersection is in the shadow. The shade_hit

function should return only the ambient color of the second
sphere in this case.

features/world.feature

Scenario: shade_hit() is given an intersection in shadow
Given w « world()
And w.light — point_light(point(0, 0, -10), color(1, 1, 1))
And sl ~ sphere()
And s1 is added to w
And s2 — sphere() with:
| transform | translation(0, 0, 10) |
And s2 is added to w
Andr ~ ray(point(0, 0, 5), vector(0, 0, 1))
And i ~ intersection(4, s2)
When comps « prepare_computations(i, r)
And ¢ « shade_hit(w, comps)
Then c = color(0.1, 0.1, 0.1)

Now, making this test pass may seem to be merely a matter of
taking the point of intersection and sending it directly to the
is_shadowed function. But if you do this, you're liable to wind up
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with a rendered picture that looks like it’s been attacked by
fleas, as in the following figure.

This effect is called acne, and it happens because computers
cannot represent floating point numbers very precisely. In
general they do okay, but because of rounding errors, it will be
impossible to say exactly where a ray intersects a surface. The
answer you get will be close—generally within a tiny margin of
error—but that wiggle is sometimes just enough to cause the
calculated point of intersection to lie beneath the actual surface
of the sphere.

As a result, the shadow ray intersects the sphere itself, causing
the sphere to cast a shadow on its own point of intersection.
This is obviously not ideal.



The solution is to adjust the point just slightly in the direction of
the normal, before you test for shadows. This will bump it above
the surface and prevent self-shadowing.

Add the following test, which sets up a sphere and an
intersection such that the intersection occurs at z=0. After calling
the prepare_computations function you wrote in Chapter 7, Making a
Scene, there should be a new attribute, over_point, which will be
almost identical to point, with the z component slightly less than
z=0.

features/intersections.feature

Scenario: The hit should offset the point
Givenr ~ ray(point(0, 0, -5), vector(0, 0, 1))
And shape — sphere() with:
| transform | translation(0, 0, 1) |
Andi « intersection(5, shape)
When comps « prepare_computations(i, r)
Then comps.over_point.z < -EPSILON/2
And comps.point.z > comps.over_point.z

Note that the test compares the over_point’s z component to half

of -EPSILON to make sure the point has been adjusted in the
correct direction.

In pseudocode, your prepare_computations function will need to do
something like this:

# after computing and (if appropriate) negating
# the normal vector...
comps.over_point — comps.point + comps.normalv * EPSILON

EPSILON is the tiny number discussed in Comparing Floating
Point Numbers, and is used here to bump the point just a bit in
the direction of the normal.
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Next, modify your shade_hit function so that it invokes is_shadowed
with the hit’s newly offset over_point attribute, and then call the
lighting function (again with over_point) with the result. It’ll look
like this in pseudocode:

function shade_hit(world, comps)
shadowed ~ is_shadowed(world, comps.over_point)

return lighting(comps.object.material,
world.light,
comps.over_point, comps.eyev, comps.normalv,
shadowed)
end function

Go ahead and make that change to your shade_hit function and
make sure your tests are all passing. Once they are, it’ll be time
to wrap this chapter up and render some shadows!



Putting It Together

Your code is written. Your tests are passing. It’s time to see how
these shadows look in practice.

Start with the program you wrote at the end of the last chapter.
If you set it up to duplicate the scene in the book, you should see
each of those colored spheres casting shadows now! If you
designed your own scene, you may or may not need to move
things around so that shadows are being cast on other objects;
make the changes necessary until you can demonstrate that
shadows are truly being rendered.

Then, start playing! Deform your spheres and watch the
shadows deform accordingly. Simulate an eclipse by positioning
a smaller sphere between a larger one and the light source. If
you’re feeling particularly ambitious, see if you can make some
shadow puppets by deforming and translating spheres!



ok

Once you've wrung all the fun you can out of casting shadows,
move on! It’s time to add another graphics primitive to join your
spheres: the plane.
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Chapter 9

Planes

You've been able to accomplish quite a bit so far using nothing
but spheres as graphic primitives, which is pretty amazing. The
world consists of a lot more than just spheres, though—even
cleverly transformed spheres. In this chapter you’ll add a new
graphics primitive—the plane—which will be perfect for
modeling floors, walls, and backgrounds.

floks) mp w3

The biggest initial hurdle will probably be refactoring your code
to support different types of graphics primitives. We’ll begin the
chapter by talking about how you might go about this
refactoring, and identify the functionality that all primitives will
have in common. Once the common functionality has been
factored out and you’ve got your test suite updated, we’ll move
on to the actual implementation of planes.

First, refactoring!



Refactoring Shapes

You may or may not have used an object-oriented programming
language thus far to build your ray tracer. Honestly, it really
doesn’t matter! But since we need some kind of common
vocabulary to describe the upcoming refactoring, let’s just agree
to use terms like “classes,” “objects,” “parents,” and
“inheritance.” Translate these concepts into your own
environments accordingly.

» &«

The goal of this next step is to take your Sphere implementation,
identify the functionality that will be common to all shapes, and
refactor those bits into an abstract parent that all other shapes
will inherit from. Once the common bits have been moved into
the abstract parent, you’ll simplify your Sphere implementation
by inheriting it from that parent.

So, what will all shapes have in common? Here’s a list that you
can start with:

e All shapes have a transformation matrix. Unless explicitly set, this
will be the identity matrix as described in Chapter 5,

Ray-Sphere Intersections

e All shapes have a material, which should default to the one
described in

The Phong Reflection Model

e When intersecting the shape with a ray, all shapes need to first



convert the ray into object space, transforming it by the inverse of
the shape’s transformation matrix.

e When computing the normal vector, all shapes need to first convert
the point to object space, multiplying it by the inverse of the shape’s
transformation matrix. Then, after computing the normal they
must transform it by the inverse of the transpose of the
transformation matrix, and then normalize the resulting vector
before returning it.

Later chapters, like Chapter 14,

Groups

, and Chapter 16,

Constructive Solid Geometry (CSG)

, will add to that list, but those four items are all you need to
worry about for now.

Begin by writing some tests that describe what this refactoring
should look like when it’s done. Because this will depend heavily
on your programming language and how you’ve architected
things so far, consider the following tests to be guidelines—ideas
for how to build your own tests.

Each of the following tests assumes there is a function called
test_shape, which exists solely to demonstrate the abstract
behaviors of the Shape class. As Shape itself is abstract, the
test_shape function instantiates and returns a special subclass of
Shape we’'ll call TestShape, which implements just enough behavior
to be concrete. (We’ll talk about what that means, specifically, in

a moment.) First, write a couple of tests that show that a shape
has a default transformation and that the transformation is



assignable. These replace the tests named “A sphere’s default
transformation” and “Changing a sphere’s default
transformation” (from

the sphere scenarios

) and are essentially identical to them, merely calling test_shape
instead of sphere.

features/shapes.feature

Scenario: The default transformation
Given s — test_shape()
Then s.transform = identity_matrix

Scenario: Assigning a transformation
Given s — test_shape()
When set_transform(s, translation(2, 3, 4))
Then s.transform = translation(2, 3, 4)

Add a couple more tests now, showing that a shape has a default
material and that the material may be assigned as well. These
replace the tests named “A sphere has a default material” and “A
sphere may be assigned a material” (from

the sphere scenarios

features/shapes.feature

Scenario: The default material
Given s — test_shape()
When m ~ s.material
Then m = material()
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Scenario: Assigning a material
Given s — test_shape()
And m ~ material()
And m.ambient ~ 1
When s.material — m
Then s.material = m

Next, test the behavior of the intersect(ray, shape) function, which is
now abstract, meaning it relies on a separate concrete
implementation to flesh out the behavior and actually perform
the intersection. All you really need to check here, though, is
that the ray is transformed before being passed on to the
concrete implementation.

One possible way to implement this (and which the following
tests assume) is to declare a local_intersect(shape, local_ray) function
for each concrete subclass of Shape. The abstract intersect function
transforms the ray and then calls local_intersect with that
transformed ray, returning the resulting collection of

intersections. The following pseudocode shows how it might
look:

function intersect(shape, ray)
local_ray  transform(ray, inverse(shape.transform))
return local_intersect(shape, local_ray)

end function

For the purposes of these tests, you really don’t care whether
any intersections occur or not, since the test shape has no real
existence. All you need to know is whether the local_ray
parameter to local_intersect has been transformed appropriately.
One way to do this is to have the test shape’s implementation of
local_intersect assign local_ray to a variable somewhere (perhaps as
an instance variable, or a global variable), which your tests can
then inspect.



The following two tests assume the existence of a new property
on the test shape, saved_ray, which the test shape’s local_intersect
function should set to the ray parameter. These tests are both
based on (and replace) the tests called “Intersecting a scaled
sphere with a ray” and “Intersecting a translated sphere with a
ray” (from

the sphere scenarios

features/shapes.feature

Scenario: Intersecting a scaled shape with a ray
Givenr  ray(point(0, 0, -5), vector(0, 0, 1))
And s ~ test_shape()
When set_transform(s, scaling(2, 2, 2))
And xs « intersect(s, r)
Then s.saved_ray.origin = point(0, 0, -2.5)
And s.saved_ray.direction = vector(0, 0, 0.5)

Scenario: Intersecting a translated shape with a ray
Givenr  ray(point(0, 0, -5), vector(0, 0, 1))
And s  test_shape()
When set_transform(s, translation(5, 0, 0))
And xs  intersect(s, r)
Then s.saved_ray.origin = point(-5, 0, -5)
And s.saved_ray.direction = vector(0, 0, 1)

The last bit of common logic is in the normal_at(sphere, point)
function, from

Computing the Normal on a Sphere

. The goal here is to make it so that individual concrete shapes
don’t have to worry about transforming points or normals—all
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they have to do is compute the normal itself.

Borrowing the same strategy as was presented for the intersect
function, you might consider creating a local_normal_at(shape,
local_point) function for each concrete subclass, which accepts a
point in local (object) space, and returns the normal in the same
space. The normal_at(shape, point) becomes generalized, so that it
transforms the point, invokes the appropriate local_normal_at
function, transforms the resulting normal, and returns it. In
pseudocode, it might look like this:

function normal_at(shape, point)
local_point « inverse(shape.transform) * point
local_normal « local_normal_at(shape, local_point)
world_normal ~ transpose(inverse(shape.transform)) * local_normal
world_normal.w « 0

return normalize(world_normal)
end function

The following two tests replace the ones called “Computing the
normal on a translated sphere” and “Computing the normal on
a transformed sphere” (from

the sphere scenarios

). These demonstrate that translation doesn’t affect the normal
but that scaling and rotation do. For the test shape’s
local_normal_at function, make it convert the point in question to a
vector: local mormal atp) = vector(p,, py. 1. )

This will be enough for you to test that the behavior is correct.

features/shapes.feature
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Scenario: Computing the normal on a translated shape
Given s — test_shape()

When set_transform(s, translation(0, 1, 0))

And n ~ normal_at(s, point(0, 1.70711, -0.70711))
Then n = vector(0, 0.70711, -0.70711)

Scenario: Computing the normal on a transformed shape
Given s — test_shape()

And m <~ scaling(1, 0.5, 1) * rotation_z(1/5)

When set_transform(s, m)

And n — normal_at(s, point(0, V2/2, -V2/2))

Then n = vector(0, 0.97014, -0.24254)

That’s the last of the common behavior that needs to be shuffled around! All
that’s left to finish the refactoring is to tidy up your sphere implementation so
that it uses this new shape abstraction.

The following checklist may help you here:

If possible, consider writing a test to check that a Sphere is a Shape. This tells you in one
stroke that every sphere will have the common behaviors of all shapes.

Remove the transformation and material tests from your sphere suite. Those are now being
checked in the tests belonging to the abstract parent class.

Change your sphere’s existing intersect tests to invoke the sphere’s local_intersect instead.
You don’t need to test the intersect function, because you’ve already demonstrated that
intersect calls local_intersect and that the ray is appropriately transformed.

Similarly, change your sphere’s existing normal_at tests so that they call local_normal_at.
Write your sphere’s local_intersect and local_normal_at functions.

You’ll probably find that you get to remove quite a bit of code from your
sphere tests and from the sphere implementation itself. This is a cause for
celebration! Once your tests are all passing, you should totally take a moment
to do a little victory dance. Or buy yourself some ice cream. Whichever
makes you happiest.

Regardless of how you celebrate, once you’re ready, read on! It’s time to use
this refactored foundation to describe a plane.



Implementing a Plane

A plane is a perfectly flat surface that extends infinitely in two
dimensions. For simplicity, your ray tracer will implement a
plane in xz—that is, extending infinitely far in both x and z
dimensions, passing through the origin. Using transformation
matrices, though, you’ll be able to rotate and translate your
planes into any orientation you like.

Because a plane has no curvature, its normal vector is constant
everywhere—it doesn’t change. Every single point on the plane
has the same normal: vector(0, 1, 0). This means that
implementing the local_normal_at function for the plane is rather
uninteresting! Add the following test to check the expected
normal vector for a few arbitrary points on the plane. It assumes
that the plane function returns a new plane.

features/planes.feature

Scenario: The normal of a plane is constant everywhere
Given p ~ plane()
When nl ~ local_normal_at(p, point(0, 0, 0))
And n2 ~ local_normal_at(p, point(10, 0, -10))
And n3 ~ local_normal_at(p, point(-5, 0, 150))
Then nl = vector(0, 1, 0)
And n2 = vector(0, 1, 0)
And n3 = vector(0, 1, 0)

The logic to intersect a ray with a plane is the only other bit that
needs implementing, and it has four cases to consider:

1. The ray is parallel to the plane, and will thus never intersect it.
2. The ray is coplanar with the plane, which is to say that the ray’s
origin is on the plane, and the ray’s direction is parallel to the plane.
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You're viewing the plane edge-on. In this case, every point on the
ray intersects the plane, resulting in an infinite number of
intersections. That’s unwieldy! But since a plane is infinitely thin,
it’s invisible when viewed like this, so we’ll assume the ray misses in
this case.

3. The ray origin is above the plane.

4. The ray origin is below the plane.

Test the first two cases by writing the following two tests. Each
sets up a plane and a ray with a direction parallel to the plane.
In both cases, local_intersect should return an empty set of
intersections.

features/planes.feature

Scenario: Intersect with a ray parallel to the plane
Given p ~ plane()
And r  ray(point(0, 10, 0), vector(0, 0, 1))
When xs ~ local_intersect(p, r)
Then xs is empty

Scenario: Intersect with a coplanar ray
Given p — plane()
Andr ~ ray(point(0, 0, 0), vector(0, 0, 1))
When xs ~ local_intersect(p, r)
Then xs is empty

To know if a ray is parallel to the plane, you need to note that
the plane is in xz—it has no slope in y at all. Thus, if your ray’s
direction vector also has no slope in y (its y component is 0), it is
parallel to the plane. In practice, you’ll want to treat any tiny
number as 0 for this comparison, as the following pseudocode
shows (using EPSILON as the threshold for “tiny number”):

function local_intersect(plane, ray)
if abs(ray.direction.y) < EPSILON
return () # empty set -- no intersections
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end if

# remaining intersection logic goes here
end function

Implement the next two tests to flesh out the behavior of the
local_intersect function, specifically testing the remaining

intersection logic. The first checks the case of a ray intersecting
a plane from above, and the second checks an intersection from
below.

features/planes.feature

Scenario: A ray intersecting a plane from above
Given p — plane()
Andr « ray(point(0, 1, 0), vector(0, -1, 0))
When xs ~ local_intersect(p, r)
Then xs.count = 1
And xs[0].t =1
And xs[0].object = p

Scenario: A ray intersecting a plane from below
Given p ~ plane()
Andr < ray(point(0, -1, 0), vector(0, 1, 0))
When xs ~ local_intersect(p, r)
Then xs.count = 1
And xs[0].t =1
And xs[0].object = p

To make these pass, you’ll need to implement the following
formula for computing the intersection of a ray with a plane.
Note that this formula only works if the plane is as described
above—in xz, with the normal pointing in the positive y

direction.

=TTl
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The variable origin is the ray’s origin, and direction is the ray’s
direction vector. The following pseudocode shows how the
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complete local_intersect function might look.

function local_intersect(ray, plane)
if abs(ray.direction.y) < EPSILON
return () # empty set -- no intersections
end if

t — -ray.origin.y / ray.direction.y
return ( intersection(t, plane) )
end function

Go ahead and make your tests pass, now. Once you've got things
stable again, wrap it up with the following short project to test
your newest graphic primitive.



Putting It Together

Write a small scene consisting of a single plane as the floor, and
a sphere or two sitting atop it. For example, here are the same
three spheres from the previous chapters, sitting on a plane:

Other things you might try:

e Add a wall as a backdrop by rotating it t/2 radians around the x
axis and translating it a few units in the positive z direction.

e Make a hexagonal-shaped room by carefully rotating and
translating planes, and then position the camera from above,
looking down, so you can see the geometry in action.



¢ Add a ceiling by translating another plane vertically, in y. (Be
careful to position your light source below the ceiling!)

e Instead of displaying an entire sphere atop the plane, translate the
sphere so it is partially embedded in the plane.

See what else you can come up with! Once you’re done
experimenting, read on. Next, you're going to see how to
decorate these planes and spheres with geometric patterns of
colors, which will make your scenes even more interesting.

Copyright © 2019, The Pragmatic Bookshelf.



Chapter 10

Patterns

Your ray tracer is really coming together now. Planes and
spheres, shading, ray-traced shadows—yeah, seriously. This is
some lovely stuff.

It gets even better, though! In this next chapter, you're going to

add yet more lickable eye candy in the form of patterns, like
this:



Yeah! Instead of rendering an entire shape with the same boring color, you’re
going to implement geometric rules that define how any given point in space
ought to be colored. We’ll cover four of these patterns: stripes, gradients,
rings, and checkers. Then you’ll be set loose to experiment and invent a few
of your own!

Here we go.



Making a Striped Pattern

A pattern is a function that accepts a point in space and returns
a color. For example, consider the following stripe pattern:

} —Pp

As the x coordinate changes, the pattern alternates between the two colors.
The other two dimensions, y and z, have no effect on it. In other words, the

I ;M Hoor| poemt ) mod 2
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function looks like this: ' |es. otherwise

That is to say, if the x coordinate is between 0 and 1, return the first color. If
between 1 and 2, return the second, and so forth, alternating between the two.
Add this pattern in your program. To do so, you’ll create a data structure that
encapsulates the colors used by the pattern, as well as a function that will



choose the appropriate color for some point.
To begin, most of the tests in this chapter will assume the existence of the
following two color constants, black and white:

features/patterns.feature

Background:

Given black  color(0, 0, 0)

And white — color(1, 1, 1)

With those defined, you can write the following test introducing a new
function, stripe_pattern(a, b), which returns a pattern instance encapsulating

the two colors a and b.

features/patterns.feature

Scenario: Creating a stripe pattern

Given pattern — stripe_pattern(white, black)
Then pattern.a = white

And pattern.b = black

Now, write a couple of tests for another new function, stripe_at(pattern,
point), which should return the appropriate color for the given pattern and
point.

features/patterns.feature

Scenario: A stripe pattern is constant in y
Given pattern — stripe_pattern(white, black)
Then stripe_at(pattern, point(0, 0, 0)) = white
And stripe_at(pattern, point(0, 1, 0)) = white
And stripe_at(pattern, point(0, 2, 0)) = white

Scenario: A stripe pattern is constant in z
Given pattern — stripe_pattern(white, black)
Then stripe_at(pattern, point(0, 0, 0)) = white
And stripe_at(pattern, point(0, 0, 1)) = white
And stripe_at(pattern, point(0, 0, 2)) = white

Scenario: A stripe pattern alternates in x
Given pattern — stripe_pattern(white, black)
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Then stripe_at(pattern, point(0, 0, 0)) = white
And stripe_at(pattern, point(0.9, 0, 0)) = white
And stripe_at(pattern, point(1, 0, 0)) = black
And stripe_at(pattern, point(-0.1, 0, 0)) = black
And stripe_at(pattern, point(-1, 0, 0)) = black
And stripe_at(pattern, point(-1.1, 0, 0)) = white

Make those two tests pass by implementing the stripe_pattern and stripe_at
functions. Remember: stripe_pattern returns a new instance of the data
structure, and stripe_at implements the function that chooses the color at a
given point. Once these tests are passing, read on!

The next step is to add this stripe pattern to your material. Start by writing
another test to show that the lighting function (from

The Phong Reflection Model

) returns the color from the pattern.

features/materials.feature

Scenario: Lighting with a pattern applied

Given m.pattern — stripe_pattern(color(1, 1, 1), color(0, 0, 0))

And m.ambient ~ 1

And m.diffuse ~ 0

And m.specular — 0

And eyev ~ vector(0, 0, -1)

And normalv ~ vector(0, 0, -1)

And light — point_light(point(0, 0, -10), color(1, 1, 1))

When c1 ~ lighting(m, light, point(0.9, 0, 0), eyev, normalv, false)

And c2 — lighting(m, light, point(1.1, 0, 0), eyev, normalv, false)

Then c1 = color(1, 1, 1)

And c2 = color(0, 0, 0)

Note that the test uses a material with only ambient illumination. This is a
handy trick for making sure the lighting function returns an easily predictable
color, since the color won’t be affected by angles, normals, or lights.

Make this test pass by modifying your lighting function, adding some code to
get the color from the pattern (via stripe_at) if the material has a pattern set.

In pseudocode, your change might look something like this:
function lighting(material, light, point, eyev, normalv, in_shadow)
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if material has a pattern

color « stripe_at(material.pattern, point)
else

color — material.color

end if

# then, compute the lighting as usual, using “color’
# instead of ‘material.color’

#...
end function

With that change, your test suite should be passing again. Yay! What is more,
you can now (kind of) render a scene containing a striped texture. Give it a
try, but don’t be disappointed if it doesn’t behave entirely as expected yet...
Whenever you’re ready, read on. We’ll talk about how to transform patterns
next, which is how you’ll finally whip this feature into shape.



Transforming Patterns

Right now, your stripes implementation has one small problem.
If you've played around with it at all, you may have seen it: the
stripes are completely fixed, frozen in place. It’s as if you were to
shine a flashlight on your scene, with a stripe filter over the
bulb. You’d find that every object that has a stripe pattern is
covered with stripes of exactly the same size and orientation,
regardless of how the objects themselves are arranged, as in this
scene:

Because the point being passed to the stripe_at function is in world space, the
patterns completely ignore the transformations of the objects to which they



are applied.

This is unfortunate, because we expect a pattern to move when its object
moves. If you make an object bigger or smaller, the pattern on it should get
bigger or smaller. Rotating an object ought to rotate the pattern, too.

Further, it makes sense to be able to transform the patterns themselves,
independently of the object. Want your stripes closer together or farther
apart? Scale them. Want to change how they are oriented on the object?
Rotate them. What to change their phase? Translate them to shift them to one
side or the other.

Write the following three tests to sketch out how this behavior should look,
and introduce a new method called stripe_at_object(pattern, object, point). It
should return the color for the given pattern, on the given object, at the given
world-space point, and it should respect the transformations on both the
pattern and the object while doing so.

features/patterns.feature

Scenario: Stripes with an object transformation

Given object — sphere()

And set_transform(object, scaling(2, 2, 2))

And pattern — stripe_pattern(white, black)

When c — stripe_at_object(pattern, object, point(1.5, 0, 0))
Then c = white

Scenario: Stripes with a pattern transformation

Given object — sphere()

And pattern — stripe_pattern(white, black)

And set_pattern_transform(pattern, scaling(2, 2, 2))

When c — stripe_at_object(pattern, object, point(1.5, 0, 0))
Then c = white

Scenario: Stripes with both an object and a pattern transformation
Given object — sphere()

And set_transform(object, scaling(2, 2, 2))

And pattern ~ stripe_pattern(white, black)

And set_pattern_transform(pattern, translation(0.5, 0, 0))

When c — stripe_at_object(pattern, object, point(2.5, 0, 0))
Then c = white
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Make these tests pass by implementing the stripe_at_object function. It
should do the following:

Multiply the given world-space point by the inverse of the object’s transformation matrix,
to convert the point to object space.

Then, multiply the object-space point by the inverse of the pattern’s transformation matrix
to convert that point to pattern space.

Pass the resulting point to your original stripe_at function, and return the result.

It’1l look like this in pseudocode:

function stripe_at_object(pattern, object, world_point)
object_point — inverse(object.transform) * world_point
pattern_point — inverse(pattern.transform) * object_point

return stripe_at(pattern, pattern_point)

end function

Almost there! Now make your program actually use this new function by
changing your lighting and shade_hit functions as follows:

Add object as yet another parameter for your lighting function. The tests and pseudocode in
this book assume the new function signature is lighting(material, object, light, point, eyev,
normalv, in_shadow).

Modify the implementation of the lighting function so that it calls stripe_at_object instead
of stripe_at.

Modify shade_hit so that it passes the hit’s object property to lighting.

Fix your lighting tests so that they create an object (a sphere is fine—it’s just a placeholder
for those tests, anyway) and pass it to lighting.

All of your tests should be passing now. Celebrate by giving the stripes
pattern another try! See what happens if you rotate the stripes, or scale them,
or transform the object they’re attached to.

When you’re ready, let’s talk about how to generalize all of this, in
preparation for adding more patterns.



Generalizing Patterns

The idea now is to modify your code so that a material can be
assigned any pattern, not just stripes. The process for
accomplishing this will look a lot like the refactoring you did in
Refactoring Shapes, when you were preparing to support
planes as primitives. Specifically, you’ll tackle this in five steps:

1. Identify the pieces that every pattern will have in common.

2. Implement an abstract pattern that encapsulates these common
pieces and delegates to concrete patterns for their specific bits.

3. Modify the stripes pattern to extend this abstract pattern.

4. Modify your material implementation to depend on the abstract
pattern.

5. Make all existing tests pass.

So, the common bits. The good news is that every pattern will be
essentially the same, differentiated only by the function that
converts points into colors. Besides that function, every pattern
will have a transformation matrix, and every pattern will need
to use it to help transform a given point from world space to
pattern space before producing a color.

As with the shapes refactoring, the way forward here is going to
depend a lot on how you’ve architected your program so far.
One way is to follow a similar strategy to that proposed for the
shapes, where the base abstraction performs the common
functionality and delegates the specific functionality to the
concrete implementations.

If you take this route, use the following tests as guidelines for



writing your own. These tests assume that the abstract function
(the one that transforms the point and delegates to the concrete
function) is called pattern_at_shape(pattern, shape, point). The concrete

function (to be implemented by each pattern) is here simply
called pattern_at(pattern, point).

The tests also assume that there is a function called test_pattern,
which is similar to the test_shape function from Refactoring

Shapes. Its job will be to help you test the behaviors of the
abstract pattern superclass by returning a special
implementation used only for the tests.

First, show that this test pattern has a transformation matrix
and that the transformation is (by default) the identity matrix.

features/patterns.feature

Scenario: The default pattern transformation
Given pattern  test_pattern()
Then pattern.transform = identity_matrix

Next, show that the pattern’s transformation can be assigned.

features/patterns.feature

Scenario: Assigning a transformation
Given pattern — test_pattern()
When set_pattern_transform(pattern, translation(1, 2, 3))
Then pattern.transform = translation(1, 2, 3)

Next, test the pattern_at_shape function to see that it correctly
transforms the points before calling the concrete function. The
following tests replace the ones you wrote earlier in the chapter,
testing the stripe pattern’s transformations.

features/patterns.feature
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Scenario: A pattern with an object transformation
Given shape — sphere()
And set_transform(shape, scaling(2, 2, 2))
And pattern  test_pattern()
When ¢ ~ pattern_at_shape(pattern, shape, point(2, 3, 4))
Then c = color(1, 1.5, 2)

Scenario: A pattern with a pattern transformation
Given shape — sphere()
And pattern  test_pattern()
And set_pattern_transform(pattern, scaling(2, 2, 2))
When c ~ pattern_at_shape(pattern, shape, point(2, 3, 4))
Then c = color(1, 1.5, 2)

Scenario: A pattern with both an object and a pattern transformation
Given shape — sphere()
And set_transform(shape, scaling(2, 2, 2))
And pattern  test_pattern()
And set_pattern_transform(pattern, translation(0.5, 1, 1.5))
When c ~ pattern_at_shape(pattern, shape, point(2.5, 3, 3.5))
Then c = color(0.75, 0.5, 0.25)

These tests assume the test pattern’s concrete function is
defined like this:

patternat (patfern, pomt | = color| pomt , pomt | pemf |

In other words, it takes the given point and returns a new color
where the color’s red/green/blue components are set to the
point’s x/y/z components. You can then use the color to see that

the point was transformed!

Once those are passing, update your stripe_pattern implementation
so that it inherits from this abstract pattern. You can remove the
code that transforms the points, since that’s now taken care of
by the abstract pattern_at_shape function.

Lastly, update your material data structure, so that it references
the abstract pattern instead of the stripe pattern, and make



lighting call the pattern_at_shape function.

Whew! Tidy things up by making sure your tests all pass, and
then move on. With this abstract pattern as a foundation, you're
ready to start implementing more patterns.



Making a Gradient Pattern

A gradient pattern is like stripes, but instead of discrete steps
from one color to the next, the function returns a blend of the
two colors, linearly interpolating from one to the other as the x
coordinate changes. If the first color is red, and the second is
blue, the resulting gradient will look like this:

N ————

Add the following test to show how a basic linear gradient pattern ought to

work.



features/patterns.feature

Scenario: A gradient linearly interpolates between colors

Given pattern — gradient_pattern(white, black)

Then pattern_at(pattern, point(0, 0, 0)) = white

And pattern_at(pattern, point(0.25, 0, 0)) = color(0.75, 0.75, 0.75)
And pattern_at(pattern, point(0.5, 0, 0)) = color(0.5, 0.5, 0.5)
And pattern_at(pattern, point(0.75, 0, 0)) = color(0.25, 0.25, 0.25)

To make this pass, your gradient_pattern implementation should use a
blending function. This is a function that takes two values and interpolates
the values between them. A basic linear interpolation looks like this:

Olor{p, Ca, a) = Ca + (6 — €a) * [P — foor(p.))

This takes the distance between the two colors, multiplies it by the fractional
portion of the x coordinate, and adds the product to the first color. The result
is a smooth, linear transition from the first color to the second.

In pseudocode, your gradient’s color function should look something like
this:

function pattern_at(gradient, point)

distance — gradient.b - gradient.a
fraction — point.x - floor(point.x)

return gradient.a + distance * fraction
end

Once that test is passing, let’s have a look at ring patterns.
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Making a Ring Pattern

A ring pattern depends on two dimensions, x and z, to decide
which color to return. It works similarly to stripes, but instead
of testing the distance of the point in just x, it tests the distance

of the point in both x and z, which results in this pattern of
concentric circles as shown in the figure.



Write the following test for this. You're checking to make sure
that these rings extend in both x and z.

features/patterns.feature
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Scenario: A ring should extend in both x and z
Given pattern « ring_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(1, 0, 0)) = black
And pattern_at(pattern, point(0, 0, 1)) = black
#0.708 = just slightly more than v2/2
And pattern_at(pattern, point(0.708, 0, 0.708)) = black

To make that pass, you’ll implement the function for a ring
pattern, something like this:

Ca, WHoor(+/pf -2 med 2 =10
color(p,€a, ) =

ol lverw e

Make that test pass, and then we’ll look at one more pattern:
checkers.



Making a 3D Checker Pattern

A two-dimensional checker pattern is a repeating pattern of
squares, where two squares of the same color are never
adjacent, like this:

Z

X—>

What’s cool is that this idea can extend to three dimensions, too, like this:



————>

You get a pattern of alternating cubes, where two cubes of the same color are
never adjacent. This three-dimensional checker pattern is the one you’ll
implement here.

Go ahead and write the following tests for these 3D checkers, showing that
the pattern does indeed repeat in all three dimensions.



features/patterns.feature

Scenario: Checkers should repeat in x

Given pattern « checkers_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0.99, 0, 0)) = white
And pattern_at(pattern, point(1.01, 0, 0)) = black

Scenario: Checkers should repeat in y

Given pattern — checkers_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0, 0.99, 0)) = white
And pattern_at(pattern, point(0, 1.01, 0)) = black

Scenario: Checkers should repeat in z

Given pattern « checkers_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0, 0, 0.99)) = white
And pattern_at(pattern, point(0, 0, 1.01)) = black

The function for this pattern is very much like that for stripes, but instead of
relying on a single dimension, it relies on the sum of all three dimensions, x,
y, and z, like this. (Note that Lx | is the same as floor(x).)
color(p,ca, ) = [ o W(|pe ]+ |py] + |p:]) mod2=0

l- k.  Oblerwise

Once your tests are all passing, read on. We’ll wrap this chapter up with

some ideas for you to experiment with.
Wiy
3

J16e asks: Why does my checkered sphere look weird?
If you try applying this checker pattern to a sphere, you’ll get something like

this:
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If you were instead expecting the pattern to cover the surface of the sphere in
a regular grid pattern, this may have left you scratching your head and
wondering what you did wrong. Well, good news! You did nothing wrong.
The pattern is working exactly right.

Because patterns convert points in space to colors, it’s as if you’re carving
that sphere out of a checker-patterned block, rather than neatly painting the
pattern onto the surface of the sphere.

To apply a two-dimensional texture (like checkers) to the surface of an
object, you need to implement something called UV mapping, which
converts a three-dimensional point of intersection (x, y, z) into a two-
dimensional surface coordinate (u, v). You’d then map that surface
coordinate to a color. It’s fun to do, but sadly beyond the scope of this book.
Tutorial-style resources are hard to find, but with a bit of reading between the
lines and some experimentation, searching for topics like “spherical texture
mapping” can bear fruit.



Putting It Together

Okay! You have working implementations of four different
patterns: stripes, gradients, rings, and checkers. Your first order
of business, then, should be to take them all for a spin! Try them
each on planes and spheres, scale them, rotate them,
experiment with different colors, and get a feel for how these
patterns behave in practice.

Once you feel like you're getting a handle on them, try some
deeper experiments. Here are a few ideas to get you started:

Radial gradient pattern

Consider your ring pattern, which creates a radial pattern
of concentric circles. Then, consider your gradient
pattern, which interpolates between two colors. How
would you combine those two concepts to create a new
“radial gradient” pattern that interpolates between two
colors, radially?

Nested patterns

Instead of specifying a pair of colors when instantiating a
pattern, what if you instead specified other patterns? So
instead of a checker pattern in black and white, make one
where the checkers contain alternating patterns of stripes
in different orientations, like this:



One way to make this work is to add a new pattern, called
solid_pattern(color), which returns the same color for every
point. Patterns can then be nested, with the innermost
pattern always being one of these solid color patterns.

Blended patterns

This adds a new pattern, blended_pattern(a, b), where a and b
are other patterns, rather than colors. The blend pattern
will then evaluate both of its patterns at each point, and
blend the resulting colors together. (Blending a color can
be as simple as averaging them, if you want, but you
could get creative with that formula, too!) For example,
here’s a blending of two green/white stripe patterns,
crossing at ninety-degree angles to one another:

Perturbed patterns
This is another fun one! It’s a way to add organic-looking
textures to your scenes. The way it works is you use a 3D



noise function to “jitter” the point before the pattern
consumes it. Look for an implementation of Perlin noise,
or Simplex noise. Then, create a new pattern, called
perturb(pattern), which uses that noise to jitter each point

before delegating it to the given pattern.

“Jittering” a point means moving it by some small
amount. With most implementations of Perlin noise, for
instance, you can request a range of values for a given
three-dimensional point. You scale those numbers by
some fraction (maybe 20% or less), and then take the
first of those values and add it to the x coordinate. Then,
add the second value to the y coordinate, and the third
value to the z coordinate. Finally, you treat that as a new
point, and pass it to the subpattern.

The result is that each pattern looks perturbed, as if
someone had stuck their finger in wet paint and swirled it
around. Here’s an example of perturbed versions of each
of the patterns from this chapter:

Implementations of Perlin noise exist for many
programming languages. For example, you can review
Ken Perlin’s original reference implementation, written
in Java.l®]



The sky’s the limit! Play around with patterns and see what you
can come up with. When you’re ready to move on, in the next
chapter we’ll be taking the realism of your scenes up a notch,
with reflection and refraction.

Footnotes

[16] https://mrl.nyu.edu/~perlin/noise/
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Chapter 11

Reflection and Refraction

All right. Hang on to your passenger assist handle, because
you're about to add another bit of material finesse to your ray
tracer. Check out this sneak preview:

That’s right, boys and girls. You’re going to make objects reflective and



transparent. Mirrors and glass marbles will be your oyster.

Both of these work through similar means: spawning an additional ray at the
point of intersection and recursively following it to determine the color at that
point. You’ll tackle them one at a time: reflection first, and then transparency
and refraction.

Are you ready? Here goes!



Reflection

Look around you. Odds are you’ll find something in your
vicinity that is reflective to one degree or another. Maybe it’s
your phone’s screen, or a polished table, or a window, or a pair
of sunglasses. Whatever it is, that reflection gives you all kinds
of clues about what to expect from that surface and helps
convince your brain that what you’re seeing is real.

This works in rendered scenes, too. Adding even just a subtle bit
of reflection can make your scene bloom with photorealism.
Consider the following two images:

Both depict the same scene, from the same angle and with the same lighting,



but the floor on the right is just slightly reflective, making it appear more
glossy than the other.

You’ll add this feature to your ray tracer with seven tests:

Add a reflective attribute to your material data structure.

Update prepare_computations to compute the ray’s reflection vector, reflectv.

Handle the case where the ray strikes a nonreflective surface.

Handle the case where the ray strikes a reflective surface.

Make sure shade_hit calls the function for computing reflections.

Make sure your ray tracer can avoid infinite recursion, as when a ray bounces between two
parallel mirrors.

Show that your code can set a limit to how deeply recursion is allowed to go.

Note that from here on out, the chapters will be a bit more streamlined. Up to
this point, you saw tests introduced with a bit of fanfare and discussion. But
now the training wheels are coming off. You know the drill by now. You will
see the tests, you will get a bit of explanation, and (where necessary) you will
walk through the algorithms and perhaps a smattering of pseudocode. You’ve
got this!

Here we go, one test at a time.
TEST #1: ADD THE REFLECTIVE MATERIAL ATTRIBUTE

Show that your material structure contains a new attribute, called reflective.
When reflective is 0, the surface is completely nonreflective, whereas setting
it to 1 produces a perfect mirror. Numbers in between produce partial
reflections.

features/materials.feature

Scenario: Reflectivity for the default material
Given m — material()
Then m.reflective = 0.0

Make sure the new attribute is a floating point value, so that you can

implement partial reflection.
TEST #2: COMPUTE THE REFLECTV VECTOR

Show that the prepare_computations function precomputes the reflectv
vector.

Create a plane and position a ray above it, slanting downward at a 45° angle.
Position the intersection on the plane, and have prepare_computations
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compute the reflection vector.

features/intersections.feature

1:Scenario: Precomputing the reflection vector
2:Given shape ~ plane()

3:And r — ray(point(0, 1, -1), vector(0, -vV2/2, V2/2))
4:Andi — intersection(v2, shape)

5:When comps ~ prepare_computations(i, )
6:Then comps.reflectv = vector(0, V2/2, V2/2)

Line 3 creates and orients the ray, and line 4 places the hit V2 units away,
courtesy of the Pythagorean theorem. Lastly, line 6 asserts that the reflect
vector bounces up from the plane at another 45° angle.

Compute reflectv in prepare_computations by reflecting the ray’s direction

vector around the object’s normal vector, like this:

# after negating the normal, if necessary
comps.reflectv — reflect(ray.direction, comps.normalv)

It’s just like you did in your lighting function, in

The Phong Reflection Model

, when you computed the light’s reflection vector. Here, though, you’re

reflecting the ray, and not the light.
TEST #3: STRIKE A NONREFLECTIVE SURFACE

Show that when a ray strikes a nonreflective surface, the reflected_color
function returns the color black.

You’'re getting to the meat of the reflection algorithm itself, now. This test
introduces a new function, reflected_color(world, comps), which will be the
core of how your ray tracer computes reflections.

Place a ray inside at the origin of the default world, inside both of the world’s
spheres. Bounce the ray off the innermost sphere. By setting the sphere’s
ambient property to 1, you can guarantee that any reflection will have
something to reflect—but because the innermost sphere is not reflective,
reflected_color should simply return black.
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features/world.feature

Scenario: The reflected color for a nonreflective material
Given w — default_world()

Andr - ray(point(0, 0, 0), vector(0, 0, 1))

And shape  the second object in w

And shape.material.ambient ~ 1

Andi — intersection(1, shape)

When comps — prepare_computations(i, r)

And color ~ reflected_color(w, comps)

Then color = color(0, 0, 0)

For this test, make your reflected_color function return black when the
material’s reflective attribute is 0. The next test will flesh that function out a

bit more.
TEST #4: STRIKE A REFLECTIVE SURFACE

Show that reflected_color returns the color via reflection when the struck
surface is reflective.

Add a reflective plane to the default scene, just below the spheres, and orient
a ray so it strikes the plane, reflects upward, and hits the outermost sphere.

features/world.feature

1: Scenario: The reflected color for a reflective material
- Givenw ~ default_world()

- And shape — plane() with:

- | material.reflective | 0.5 |

5: | transform | translation(0, -1, 0) |

- And shape is added to w

- Andr — ray(point(0, 0, -3), vector(0, -V2/2, V2/2))
- Andi - intersection(v2, shape)

-  When comps ~ prepare_computations(i, r)
10:And color  reflected_color(w, comps)

- Then color = color(0.19032, 0.2379, 0.14274)

Lines 3-5 configure the (semi)reflective plane and position it at y = -1. After
preparing the hit, the reflected color will be a darker version of the sphere’s
shade of green, because the plane will only reflect half of the light from the
sphere.

Implement reflected_color by creating a new ray, originating at the hit’s
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location and pointing in the direction of reflectv. Find the color of the new
ray via color_at, and then multiply the result by the reflective value. If
reflective is set to something between 0 and 1, this will give you partial
reflection.

In pseudocode, it goes like this:
function reflected_color(world, comps)
if comps.object.material.reflective = 0
return color(0, 0, 0)

end if

reflect_ray ~ ray(comps.over_point, comps.reflectv)
color — color_at(world, reflect_ray)

return color * comps.object.material.reflective
end function

Spawning these secondary rays is how ray tracers can produce such realistic
reflections. Just make sure to use the comps.over_point attribute (and not
comps.point) when constructing the new ray. Otherwise, floating point
rounding errors will make some rays originate just below the surface, causing

them to intersect the same surface they should be reflecting from.
TEST #5: UPDATE THE SHADE_HIT FUNCTION

Show that shade_hit incorporates the reflected color into the final color.
Recycle the previous test, but this time call shade_hit instead of calling
reflected_color directly. The resulting color should combine the white of the
plane with the reflected green of the sphere.

features/world.feature

Scenario: shade_hit() with a reflective material
Given w — default_world()

And shape — plane() with:

| material.reflective | 0.5 |

| transform | translation(0, -1, 0) |

And shape is added to w

Andr — ray(point(0, 0, -3), vector(0, -V2/2, V2/2))
Andi — intersection(v2, shape)

When comps ~ prepare_computations(i, )

And color ~ shade_hit(w, comps)
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Then color = color(0.87677, 0.92436, 0.82918)
Implement this by making the shade_hit function call reflected_color, and

adding the color it returns to the surface color. In pseudocode:
function shade_hit(world, comps)
shadowed ~ is_shadowed(world, comps.over_point)

surface  lighting(comps.object.material,
comps.object,

world.light,

comps.over_point, comps.eyev, comps.normalyv,
shadowed)

»reflected — reflected_color(world, comps)
»

»return surface + reflected
end function

By adding the reflected color to the surface color, the two blend together and
produce a believable reflection. However, there’s a gotcha hiding here. The
shade_hit function now calls reflected_color, which calls color_at, which
calls shade_hit... That’s a recursive loop, with the potential to cause some

problems. Let’s address that next.
TEST #6: AVOID INFINITE RECURSION

Show that your code safely handles infinite recursion caused by two objects
that mutually reflect rays between themselves.

Create two parallel mirrors by positioning one plane above another and
making them both reflective. Orient a ray so that it strikes one plane and
bounces to the other. What will happen?

features/world.feature

Scenario: color_at() with mutually reflective surfaces
Given w — world()

And w.light — point_light(point(0, 0, 0), color(1, 1, 1))
And lower — plane() with:

| material.reflective | 1 |

| transform | translation(0, -1, 0) |

And lower is added to w

And upper — plane() with:

| material.reflective | 1 |
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| transform | translation(0, 1, 0) |

And upper is added to w

And r - ray(point(0, 0, 0), vector(0, 1, 0))

Then color_at(w, r) should terminate successfully

Your ray tracer will probably not handle this well. Because of that recursive
loop you made for the previous test, your reflections will bounce back and
forth between those two mirrors, right up until your stack explodes.

Infinite recursion is the pits.

W
2

J16e asks: How can I test “should terminate successfully”?
Testing “should terminate successfully” can be tricky. Rather than trying to

determine whether your program will actually terminate (because good luck
with that

[17]

), it might be better to check for the opposite. Look for what happens when
the program doesn’t terminate. Mostly likely, under infinite recursion, your
program will eventually run out of memory. Does your environment raise an
exception when this happens? Test for that, if you can. Or, if that’s not an
option, you might instead assert that the function terminates in some finite
amount of time.

Still, the tests must pass. One way to accomplish this is to limit how deeply
the recursion is allowed to go. After all, if a ray can only bounce four or five
times, it is unlikely to blow up your call stack. You can implement this
constraint by declaring some threshold and then requiring the reflected_color
function to return immediately if the recursion goes deeper than that.

For now, allow this test to fail. The next test will point you in the right

direction and will help you get them both passing.
TEST #7: LIMIT RECURSION

Show that reflected_color returns without effect when invoked at the limit of
its recursive threshold.
Duplicate the scenario in



Test #5: Update the shade_hit Function

. The difference, though, is that here you’ll invoke reflected_color(world,
comps, remaining) with a new, additional parameter—remaining—which
tells the function how many more recursive calls it is allowed to make.

features/world.feature

1: Scenario: The reflected color at the maximum recursive depth
- Givenw — default_world()

- And shape — plane() with:

- | material.reflective | 0.5 |

5: | transform | translation(0, -1, 0) |

- And shape is added to w

- Andr ~ ray(point(0, 0, -3), vector(0, -vV2/2, V2/2))
- Andi — intersection(V2, shape)

- When comps ~ prepare_computations(i, r)
10:And color — reflected_color(w, comps, 0)

- Then color = color(0, 0, 0)

Line 10 sets the remaining parameter to 0, telling the function that it is not
allowed to make any more recursive calls. It should return black instead.
Make this pass by adding another condition to the top of your reflected_color
function. It should return black if remaining is less than 1.

To make this useful, though, you next need to pass that number back and
forth between color_at, shade_hit, and reflected_color. Perform the following

refactoring:

Add a third parameter to color_at(world, ray, remaining).

Add a third parameter to shade_hit(world, hit, remaining).

Make color_at pass the remaining value to shade_hit.

Make it so that when reflected_color calls color_at, it decrements the remaining value
before passing it on.

In other words, use something like this:

function color_at(world, ray, remaining)
7.

color — shade_hit(world, comps, remaining)
7.

end function
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function shade_hit(world, comps, remaining)

# ...

reflected — reflected_color(world, comps, remaining)
# ...

end function

function reflected_color(world, comps, remaining)
if remaining <=0

return color(0, 0, 0)

end if

# ...

color — color_at(world, reflect_ray, remaining - 1)
# ...

end function

In this way, your code keeps track of how deep the recursion is allowed to go
and avoids nastiness when things get a little carried away.

Be sure to change all existing calls of color_at and shade_hit to pass in the
maximum recursive depth via the new remaining parameter. If your
programming language supports default parameter values, this is a great place
for it. Setting remaining’s default value to 4 or 5 is empirically pretty safe.
Larger numbers will slow down your renderer on scenes with lots of
reflective objects.

Once that’s done, you should find that all your previous tests are now passing
again, including

Test #6: Avoid Infinite Recursion

Whew!

Take a moment and celebrate with a simple scene. Populate it with spheres,
and make some of them reflective. See how the color of a surface affects
reflection. Do some colors work better than others? What happens when you
vary the ambient, diffuse, and specular parameters on a reflective surface?
When you’ve got that working to your satisfaction, read on. It’s time to talk
about transparency and refraction.



Transparency and Refraction

Refraction describes how light bends when it passes from one
transparent medium to another. With this added to your ray
tracer, you’ll be able to render pretty convincing glass, water,
and other transparent materials. The following figure is one
example, showing how a glass sphere distorts the image of the
scene behind it.



Refraction is governed by a property called the refractive index




(or index of refraction). It’s a number that determines the
degree to which light will bend when entering or exiting the
material, compared to other materials. The larger the number,
the more strongly light will bend when encountering that
material.

You can find various lists online of materials and their

corresponding indices of refraction.
[18]

To save you the search, here are some of the more common
materials and their refractive indices:

e Vacuum: 1

e Air: 1.00029

Water: 1.333

Glass: 1.52

Diamond: 2.417

Once again, the key to making this work in your ray tracer is to
spawn a secondary ray every time your ray encounters a
transparent material, just like you did for reflection. The
difference here is really just the math that determines which
direction the new ray should go.

You’'ll implement this in eight tests:

1. Add transparency and refractive_index to material as new attributes.

2. For a given intersection, find the refractive index of the material
that the ray is passing from, and the refractive index of the material
that the ray is passing to. We typically refer to these as n, and n..

3. Add a new attribute in prepare_computations, called under_point,



which determines where the refracted ray will originate.
4. Handle refraction when the surface is opaque.
Handle refraction when the maximum recursive depth is reached.

@

6. Handle refraction under total internal reflection. (More on that in a
bit!)

7. Handle refraction in the general case, when the surface is
transparent.

8. Combine the reflected and refracted colors with the material color
to find the final surface color.

You've got this!

TEST #1: ADD THE MATERIAL ATTRIBUTES FOR
TRANSPARENCY AND REFRACTIVE_INDEX

Show that your material structure contains two new
attributes, called transparency and refractive_index. transparency

defaults to 0, and refractive_index defaults to 1.

features/materials.feature

Scenario: Transparency and Refractive Index for the default material
Given m — material()
Then m.transparency = 0.0
And m.refractive_index = 1.0
Defaulting transparency to 0 makes all surfaces opaque by default,
and using 1 as the default for refractive_index makes all objects

empty, vacuum-filled shells.

With the addition of those two attributes, you can also
implement a helper function, glass_sphere, that creates a sphere
with a glassy texture. Add the following test to make sure it
works as expected.
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features/spheres.feature

Scenario: A helper for producing a sphere with a glassy material
Given s — glass_sphere()
Then s.transform = identity_matrix
And s.material.transparency = 1.0
And s.material.refractive_index = 1.5

This will come in handy for later tests, including the very next
one.

TEST #2: DETERMINING N; AND N,

Show that prepare_computations determines n, and n, correctly at
six different points of intersection.

As mentioned, n, and n, are the names given to the refractive
indices of the materials on either side of a ray-object
intersection, with n, belonging to the material being exited, and
n, belonging to the material being entered.

For this test, construct a scene which looks something like this
in cross-section:
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A, B, and C are three glass spheres, with B and C contained by A and
overlapping each other slightly. A ray is cast through the center of all three,
and your test must check that prepare_computations can correctly determine
n; and n, at each of the numbered intersections.

This test is presented as a scenario outline with certain variable names
between angle brackets, like <this>. A table below the scenario, called
"Examples," shows what values should be plugged into the test for each
variable, with the rows representing separate invocations of the test.

features/intersections.feature

1: Scenario Outline: Finding n1 and n2 at various intersections
- Given A ~ glass_sphere() with:

- | transform | scaling(2, 2, 2) |

- | material.refractive_index | 1.5 |

5: And B -~ glass_sphere() with:

- | transform | translation(0, 0, -0.25) |

- | material.refractive_index | 2.0 |

- And C « glass_sphere() with:

- | transform | translation(0, 0, 0.25) |

10:| material.refractive_index | 2.5 |
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- Andr ~ ray(point(0, 0, -4), vector(0, 0, 1))

- And xs ~ intersections(2:A, 2.75:B, 3.25:C, 4.75:B, 5.25:C, 6:A)
-  When comps ~ prepare_computations(xs[<index>], r, xs)

- Then comps.nl = <n1>

15:And comps.n2 = <n2>

Examples:

| index | n1 | n2 |

10[1.0]| 1.5

20:/1[1.5]2.0]

1212.0]|2.5|

13]2.5]2.5]

142515

15]1.5]1.0|

Here, the examples correspond to the intersections to be tested. For instance,
the example on line 19 says that when looking at the intersection at index 0,
n; should be 1.0 and n, should be 1.5. Those values are substituted on lines
13-15, replacing the variables <index>, <n1>, and <n2>, and then the test

runs. This repeats for each row in the Examples table.

Note in particular the behavior at intersection #3, where n; and n, are both
2.5. This is a consequence of how spheres B and C overlap. Sphere C is
entered at intersection #2, so when sphere B is exited at #3, it turns out that
C, with a refractive index of 2.5, is effectively on both sides of the
intersection. This won’t happen often, but that’s why it makes a good test
case!
Now, you may have noticed already the new argument being passed to
prepare_computations(intersection, ray, xs). The third argument, xs, is the
collection of all intersections, which can tell you where the hit is relative to
the rest of the intersections. With that, you can decide which object, if any,
contains the intersected object.
Adding a new parameter to prepare_computations will affect any
test you’ve written so far that calls this function, which is more than
a few. If that gives you grief, and if your programming language
supports optional parameters, consider making the xs parameter
optional. If not given, it can default to a collection of one value, the



intersection. Just make sure you update (at least) your color_at
function so it sends the actual list of intersections to
]2 prepare_computations!

The algorithm works like this: start with an empty list, called containers, that
will record which objects have been encountered but not yet exited. These
objects must contain the subsequent intersection. Then, iterating over the

collection of intersections, do the following at each intersection.

If the intersection is the hit, set n; to the refractive index of the last object in the containers
list. If that list is empty, then there is no containing object, and n; should be set to 1.

If the intersection’s object is already in the containers list, then this intersection must be
exiting the object. Remove the object from the containers list in this case. Otherwise, the
intersection is entering the object, and the object should be added to the end of the list.

If the intersection is the hit, set n, to the refractive index of the last object in the containers
list. If that list is empty, then again, there is no containing object and n, should be set to 1.
If the intersection is the hit, terminate the loop here.

As pseudocode, it looks something like this:
containers — empty list

fori — each intersection in xs

if i = hit then

if containers is empty

comps.nl — 1.0

else

comps.nl — last(containers).material.refractive_index
end if

end if

if containers includes i.object then
remove i.object from containers
else

append i.object onto containers
end if

if i = hit then

if containers is empty

comps.n2 — 1.0

else



comps.n2 — last(containers).material.refractive_index
end if

terminate loop
end if

end for

Add that logic to prepare_computations, and get that test passing.
TEST #3: COMPUTING UNDER_POINT

Show that prepare_computations computes a new attribute, under_point,
which lies just beneath the intersected surface.

Construct an intersection between a ray and a glass sphere such that the
intersection occurs at z=0. After preparing the computations, the under_point
attribute should describe a point just beneath the surface of the sphere, barely
more than z=0.

features/intersections.feature

Scenario: The under point is offset below the surface
Given r ~ ray(point(0, 0, -5), vector(0, 0, 1))

And shape — glass_sphere() with:

| transform | translation(0, 0, 1) |

Andi — intersection(5, shape)

And xs ~ intersections(i)

When comps ~ prepare_computations(i, r, Xs)
Then comps.under_point.z > EPSILON/2

And comps.point.z < comps.under_point.z

Note that the result is compared against half of EPSILON to make sure that it
has been adjusted in the correct direction.

The purpose of this new attribute is to describe where the refracted rays will
originate. Remember in

Rendering Shadows

, how you computed the over_point attribute so it was offset just a fraction
above the surface to prevent objects from shadowing themselves? It’s the
same thing here, only instead of lifting the point above the surface, you push
the point below the surface.
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Compute that attribute exactly as you did for comps.over_point, but instead
of adding a fraction of the surface normal vector, you’ll subtract it. In

pseudocode, it’1l look like this:
comps.point — position(ray, comps.t)

# and then, after computing and possibly negating
# the normal vector...

comps.over_point — comps.point + comps.normalv * EPSILON
comps.under_point — comps.point - comps.normalv * EPSILON
TEST #4: FINDING THE REFRACTED COLOR OF AN OPAQUE OBJECT

Introduce a new function, refracted_color(world, comps, remaining), and
show that it returns the color black when the hit applies to an opaque object.
Intersect a ray with the first sphere of the default world. After preparing the
hit, calling refracted_color(world, comps, remaining) should return black,
because the sphere is not transparent at all.

features/world.feature

Scenario: The refracted color with an opaque surface
Given w — default_world()

And shape - the first object in w

And r - ray(point(0, 0, -5), vector(0, 0, 1))

And xs ~ intersections(4:shape, 6:shape)

When comps ~ prepare_computations(xs[0], r, xs)
And c ~ refracted_color(w, comps, 5)

Then c = color(0, 0, 0)

Making this pass requires refracted_color to check the material of the hit
object, returning black if transparency is 0 . For now, be sure and return some

other color (like white) when transparency is not 0, like this:
function refracted_color(world, comps, remaining)
if comps.object.material.transparency = 0

return color(0, 0, 0)
end if

return color(1, 1, 1)
end function

That helps ensure that the test fails if you get the logic wrong in your code,
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while you incrementally build out the rest of the refracted_color function.

TEST #5: FINDING THE REFRACTED COLOR AT THE MAXIMUM
RECURSIVE DEPTH

Show that refracted_color returns the color black when invoked at the
maximum recursive depth, when there are no remaining recursive calls
available.

Intersect a ray again with the first sphere of the default world, but this time
give the sphere a glassy material. Then, invoke refracted_color with the
remaining parameter set to 0. It should return the color black.

features/world.feature

Scenario: The refracted color at the maximum recursive depth
Given w — default_world()

And shape - the first object in w

And shape has:

| material.transparency | 1.0 |

| material.refractive_index | 1.5 |

Andr ~ ray(point(0, 0, -5), vector(0, 0, 1))

And xs — intersections(4:shape, 6:shape)

When comps ~ prepare_computations(xs[0], r, xs)
And c — refracted_color(w, comps, 0)

Then c = color(0, 0, 0)

To pass this test, your function must return black if remaining is 0.

TEST #6: FINDING THE REFRACTED COLOR UNDER TOTAL INTERNAL
REFLECTION

Show that refracted_color returns the color black when the conditions are
right for total internal reflection.

This case deals with total internal reflection. No, it’s not the name of a metal
band. This is a phenomenon that occurs when light enters a new medium at a
sufficiently acute angle, and the new medium has a lower refractive index
than the old. For example, a ray of light moving from water to air could
experience total internal reflection if it strikes the interface between them at a
small enough angle.

When these conditions are true, the ray will reflect off the interface, instead
of passing through it, as the following illustration shows.


http://media.pragprog.com/titles/jbtracer/code/features/world.feature

Air Air

- \Ja{g?h ' \‘\Jater

This, incidentally, is what allows things like fiber optic cable to work.
Under total internal reflection, light is not propagated across the interface
between the two media. This means that your ray tracer should return the
color black when total internal reflection occurs.

Construct a scene where the ray starts inside the first sphere of the default
world and strikes that sphere at a sufficiently acute angle. Total internal
reflection should result, and the function should return black.

features/world.feature

Scenario: The refracted color under total internal reflection
Given w — default_world()

And shape - the first object in w

And shape has:

| material.transparency | 1.0 |

| material.refractive_index | 1.5 |

And r ~ ray(point(0, 0, v2/2), vector(0, 1, 0))

And xs « intersections(-vV2/2:shape, V2/2:shape)

# NOTE: this time you're inside the sphere, so you need
# to look at the second intersection, xs[1], not xs[0]
When comps ~ prepare_computations(xs[1], r, xs)
And c ~ refracted_color(w, comps, 5)

Then c = color(0, 0, 0)

The implementation of this depends on a little thing called Snell’s Law,
which describes the relationship between the angle of the incoming ray and


http://media.pragprog.com/titles/jbtracer/code/features/world.feature

the angle of the refracted ray. Given those two angles, 6; and 0, (say, “theta i”

Bl ”l [

and “theta t”), Snell’s Law declares: =u#
Now it’s a matter of applying a few trigonometric identities to turn this into
information you can use in your ray tracer, but don’t panic! What you need to

do is find 0;, given 0, which goes like this in pseudocode:

# Find the ratio of first index of refraction to the second.
# (Yup, this is inverted from the definition of Snell's Law.)
n_ratio « comps.nl / comps.n2

# cos(theta_i) is the same as the dot product of the two vectors
cos_i — dot(comps.eyev, comps.normalv)

# Find sin(theta_t)/\2 via trigonometric identity
sin2_t « n_ratioA2 * (1 - cos_iN2)

If sin2_t is greater than 1, then you’ve got some total internal reflection going
on. Go ahead and update your refracted_color function to check for this case,

and return the color black when it does.
TEST #7: FINDING THE REFRACTED COLOR

Show that refracted_color in all other cases will spawn a secondary ray in the
correct direction, and return its color.

Start with the default world, but make the first, outermost sphere fully
ambient, so that it shows up regardless of lighting. Apply the test pattern
from

Generalizing Patterns

, to it. The second, innermost sphere is given a glassy material. Then spawn a
ray inside the innermost sphere, pointing straight up.

Remember that the test pattern will return a color based on the point of
intersection, which means the test can inspect the returned color to determine
whether or not the ray was refracted. Sneaky!

features/world.feature

Scenario: The refracted color with a refracted ray
Given w — default_world()
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And A ~ the first object in w

And A has:

| material.ambient | 1.0 |

| material.pattern | test_pattern() |

And B — the second object in w

And B has:

| material.transparency | 1.0 |

| material.refractive_index | 1.5 |

Andr ~ ray(point(0, 0, 0.1), vector(0, 1, 0))

And xs — intersections(-0.9899:A, -0.4899:B, 0.4899:B, 0.9899:A)
When comps ~ prepare_computations(xs[2], r, xs)
And c ~ refracted_color(w, comps, 5)

Then c = color(0, 0.99888, 0.04725)

To make this test pass, update your refracted_color function again. It needs to
do a few more computations to figure out which direction the ray is refracted
and then spawn and evaluate that refracted ray. In pseudocode, it goes like
this:

# Find cos(theta_t) via trigonometric identity
cos_t « sqrt(1.0 - sin2_t)

# Compute the direction of the refracted ray
direction — comps.normalv * (n_ratio * cos_i - cos_t) -
comps.eyev * n_ratio

# Create the refracted ray
refract_ray « ray(comps.under_point, direction)

# Find the color of the refracted ray, making sure to multiply
# by the transparency value to account for any opacity

color — color_at(world, refract_ray, remaining - 1) *
comps.object.material.transparency

Just so.
TEST #8: HANDLING REFRACTION IN SHADE HIT

Show that your shade_hit function handles refraction.

Add a glass floor to the default world, positioned just below the two default
spheres, and add a new, colored sphere below the floor. Cast a ray diagonally
toward the floor, with the expectation that it will refract and eventually strike
the colored ball. Because the plane is only semitransparent, the resulting
color should combine the refracted color of the ball and the color of the



plane.

features/world.feature

Scenario: shade_hit() with a transparent material
Given w — default_world()

And floor « plane() with:

| transform | translation(0, -1, 0) |

| material.transparency | 0.5 |

| material.refractive_index | 1.5 |

And floor is added to w

And ball « sphere() with:

| material.color | (1, 0, 0) |

| material.ambient | 0.5 |

| transform | translation(0, -3.5, -0.5) |

And ball is added to w

Andr — ray(point(0, 0, -3), vector(0, -V2/2, V2/2))
And xs « intersections(v2:floor)

When comps — prepare_computations(xs[0], r, xs)
And color  shade_hit(w, comps, 5)

Then color = color(0.93642, 0.68642, 0.68642)

Make this pass by calling refracted_color from shade_hit and adding its result
to the sum of the reflected and surface colors.

At this point things look pretty good. Your renderer can produce lovely
refraction effects, but be careful: the results will be unpleasant when total
internal reflection comes into play. Consider the following two images. Each
depicts a glass sphere, with an air bubble in the middle of it.
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The sphere on the left is what your ray tracer will currently produce, adding
the refracted color to the surface color. Sadly, total internal reflection causes
the interaction between the glass and the pocket of air to render that black
band. The sphere on the right, though, uses a more realistic algorithm that
blends reflection and refraction together, mitigating the band. Kind of “night
and day,” right?

The secret sauce here is the Fresnel effect, and the good news is that it’s not
much more work to add to your ray tracer. Read on to see how it comes
together.



Fresnel Effect

The Fresnel effect (that’s a silent “s,” by the way—thank the
French for that) is the name for how light behaves on
transparent surfaces. If you’ve ever stood beside a lake, you’ll be
familiar with it. Looking straight down into the water, you see
the rocks and fish below the surface. But as you look up toward
the far shore, the water becomes more opaque and reflects more
and more of the scenery. The following figure demonstrates
this, with a brown/green checkered plane for the bottom of the
lake, and a second, transparent plane as the water. A white/gray
checkered wall in the far distance stands in for the scenery.
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Notice specifically how the “water” strongly reflects the
white/gray checkered wall when far away and more weakly
close-up. Similarly, the water is strongly transparent close-up,
but less so at a distance.

The formulas that describe this behavior were first deduced in
the early 1800s by Augustin-Jean Fresnel, a French physicist.

The basic idea is this: when the angle between the eye and the
surface is large (“looking straight down into the water”), the



amount of light reflected is small relative to the amount
transmitted through the surface, and when the angle is small
(“looking toward the far shore”), the amount of light reflected is
larger.

This inverse relationship between reflection and refraction is
what fixes that “black out” caused by total internal reflection. It
gets filled in by reflections—the refracted and reflected rays
complement each other, balancing things out nicely.

The bad news? Fresnel’s equations deal with more than our
simulation cares about, like the polarization of light. While it’s
certainly possible to model all of this in software, to do so would
be slow.

The good news? Another fellow, Christophe Schlick, came up
with an approximation to Fresnel’s equations that is much
faster, and plenty accurate besides. Hurray for Schlick!

To make this work, you’ll implement a new function,
schlick(comps), which returns a number between 0 and 1,
inclusive. This number is called the reflectance and represents
what fraction of the light is reflected, given the surface
information at the hit.

You’'ll implement the schlick function with four tests:

Reflectance when total internal reflection occurs.
Reflectance when a ray strikes a surface at a 90° angle.
Reflectance when n, is greater than n,, and the angle is small.

S W N e

Reflectance always used by shade_hit when a surface is both
reflective and transparent.



Here goes! You're on the final stretch.

TEST #1: DETERMINE REFLECTANCE UNDER TOTAL
INTERNAL REFLECTION

Show that schlick returns a 1 when conditions are right for total
internal reflection.

Position a ray inside a glass sphere, offset from the center and
pointing straight up. The ray is offset sufficiently to trigger total
internal reflection, resulting in schlick returning 1.

features/intersections.feature

Scenario: The Schlick approximation under total internal reflection
Given shape — glass_sphere()
Andr « ray(point(0, 0, V2/2), vector(0, 1, 0))
And xs « intersections(-V2/2:shape, V2/2:shape)
When comps — prepare_computations(xs[1], r, xs)
And reflectance — schlick(comps)
Then reflectance = 1.0

Intuitively, “total internal reflection” means all the light is
reflected and none is refracted. The fraction of light that is
reflected must be 1 in this case. This is called the reflectance.

Make that test pass by implementing a check for total internal
reflection. The following pseudocode describes how it works:

function schlick(comps)
# find the cosine of the angle between the eye and normal vectors
cos — dot(comps.eyev, comps.normalv)

# total internal reflection can only occur if n1 > n2
if comps.n1 > comps.n2

n — comps.nl / comps.n2

sin2_t =n/A2 * (1.0 - cos/\2)

return 1.0 if sin2_t> 1.0
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end if

# return anything but 1.0 here, so that the test will fail
# appropriately if something goes wrong.
return 0.0

end function

Remember that total internal reflection can only happen when
n, is greater than n,, so the check itself is guarded by that
condition. The cos variable, though, will be used later in the
function and should be initialized regardless of whether or not
total internal reflection occurs.

TEST #2: DETERMINE REFLECTANCE OF A
PERPENDICULAR RAY

Show that reflectance (via schlick) is small when a ray strikes
the surface at a perpendicular angle.

Create a glass sphere and a ray that intersects it. The ray should
strike the sphere perpendicular to its surface. The reflectance in
this case will be slight.

features/intersections.feature

Scenario: The Schlick approximation with a perpendicular viewing angle
Given shape — glass_sphere()
And r  ray(point(0, 0, 0), vector(0, 1, 0))
And xs ~ intersections(-1:shape, 1:shape)
When comps ~ prepare_computations(xs[1], r, xs)
And reflectance — schlick(comps)
Then reflectance = 0.04

Don’t worry about making this one pass just now; we’ll discuss
the implementation at the end of the following test, and you’ll
make them both pass in one fell swoop!

TEST #3: DETERMINE REFLECTANCE WHEN N; > N,
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Show that reflectance (via schlick) is significant when n, > n,
and the ray strikes the surface at a small angle.

This is the “looking across the lake to the far shore” scenario,
and a significant amount of light should be reflected. The test
mimics this by preparing a ray so that it glances off a sphere,

almost tangent to it.

features/intersections.feature

Scenario: The Schlick approximation with small angle and n2 > n1
Given shape — glass_sphere()
And r ~ ray(point(0, 0.99, -2), vector(0, 0, 1))
And xs ~ intersections(1.8589:shape)
When comps ~ prepare_computations(xs[0], r, xs)
And reflectance — schlick(comps)
Then reflectance = 0.48873

Make this test and the previous test pass by adding a few more
computations to your schlick function. The following pseudocode
finishes it off by adding the indicated lines:

function schlick(comps)
# find the cosine of the angle between the eye and normal vectors
cos « dot(comps.eyev, comps.normalv)

# total internal reflection can only occur if n1 > n2
if comps.n1 > comps.n2

n « comps.nl/comps.n2

sin2_t =n/2 * (1.0 - cos\2)

return 1.0 if sin2_t > 1.0

# compute cosine of theta_t using trig identity
cos_t « sqrt(1.0 - sin2_t)

# when n1 > n2, use cos(theta_t) instead
COS « COs_t

end if

10 « ((comps.nl - comps.n2) / (comps.nl + comps.n2))/2
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return r0 + (1 -r0) * (1 - cos)\5
end function

This probably all seems like magic, but I promise it’s grounded
in reality! An excellent paper called “Reflections and
Refractions in Ray Tracing,” by Bram de Greve, isn’t long and

is well worth the read if you're curious about the math behind
all of this.

TEST #4: EMPLOY REFLECTANCE WHEN COMBINING
REFLECTION AND REFRACTION

Show that the schlick reflectance value is used by shade_hit when a
material is both transparent and reflective.

This is essentially the same test as Test #8: Handling
Refraction in shade__ hit, but the plane is made both transparent
and reflective. This will cause the color at the point of
intersection to incorporate both the reflected and refracted
colors, combining those of the default world’s spheres with the
sphere that was added below the plane.

features/world.feature

Scenario: shade_hit() with a reflective, transparent material
Given w < default_world()
Andr  ray(point(0, 0, -3), vector(0, -V2/2, V2/2))
And floor « plane() with:
| transform | translation(0, -1, 0) |
| material.reflective | 0.5 |
| material.transparency | 0.5 |
| material.refractive_index | 1.5 |
And floor is added to w
And ball < sphere() with:
| material.color | (1, 0, 0) |
| material.ambient | 0.5 |
| transform | translation(0, -3.5, -0.5) |
And ball is added to w
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And xs « intersections(v2:floor)

When comps ~ prepare_computations(xs[0], r, xs)
And color  shade_hit(w, comps, 5)

Then color = color(0.93391, 0.69643, 0.69243)

Make this work by changing your shade_hit function, so that

instead of naively returning the sum of the surface, reflected,
and refracted colors, you'll first check to see if the surface
material is both transparent and reflective. If it is, you’ll use the
Schlick approximation to combine them. The following
pseudocode demonstrates:

function shade_hit(world, comps, remaining)
shadowed ~ is_shadowed(world, comps.over_point)

surface — lighting(comps.object.material,
comps.object,
world.light,
comps.over_point, comps.eyev, comps.normalv,
shadowed)

reflected — reflected_color(world, comps, remaining)
refracted — refracted_color(world, comps, remaining)

material — comps.object.material
if material.reflective > 0 & & material.transparency > 0
reflectance — schlick(comps)
return surface + reflected * reflectance +
refracted * (1 - reflectance)
else
return surface + reflected + refracted
end
end function

There! That ought to do it. Once your tests are all passing,
you're set to render bona fide reflections and refractions,
complete with Fresnel effects. Impressive!



Putting It Together

Ray tracers are best known for mirrors and glass. Take some
time and experiment, to see why. Here are a few tips for figuring
out how to employ reflection and refraction effectively in your
scenes.

1. We tend to think of glass as exclusively transparent, but no one is
surprised to look in a window and see their own ghostly reflection
superimposed over the scene. When rendering glass or any similar
material, set both transparency and reflectivity to high values, 0.9 or
even 1. This allows the Fresnel effect to kick in, and gives your
material an added touch of realism!

2. Because the reflected and refracted colors are added to the surface
color, they’ll tend to make such objects brighter. You can tone down
the material’s diffuse and ambient properties to compensate. The
more transparent or reflective the surface, the smaller the diffuse
property should be. This way, more of the color comes from the
secondary rays, and less from the object’s surface.

3. If you’d like a subtly colored mirror, or slightly tinted glass, use a
very dark color, instead of a very light one. Red glass, for instance,
should use a very dark red, almost black, instead of a very bright
red. In general, the more reflective or transparent the surface, the
darker its surface color should be. Note that if you add color, make
sure that you have some diffuse and possibly ambient contribution,
too; otherwise, your surface will render as black regardless of what
color you give to it.

4. Reflective and transparent surfaces pair nicely with tight specular
highlights. Set specular to 1 and bump shininess to 300 or more to get
a highlight that really shines.

Also, here’s a closing challenge for you: suppose you wanted to



render a scene where you were looking through the surface of a
pond at some rocks beneath it. In terms of implementation, that
would be a transparent plane, with some spheres scattered
below it. As your ray tracer is currently implemented, the plane
is going to cast a shadow on anything beneath it, which leaves
everything under the water in darkness, ruining the effect. You
could add a light source beneath the plane, but that will
introduce odd shadows and highlights—not a good solution
either.

What you really want is for some objects to “opt out” of the
shadow calculation. The surface of the pond, for instance,
should be ignored when calculating shadows.

How would you go about changing your ray tracer to support
that? What would you need to do to allow objects to individually
declare that they cast no shadow?

Chew on that one for a bit. When you’re ready to move on, turn
the page! Next up, you’ll add another primitive shape to your
ray tracer: the humble cube.

Footnotes

[17] See Wikipedia’s entry on the Halting problem:
https://en.wikipedia.org/wiki/Halting_problem

[18] Here’s one such list: http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/indrf.html
[19] Many online sites have a copy. Here’s one:

https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--
reflection_refraction.pdf.

Copyright © 2019, The Pragmatic Bookshelf.
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Chapter 12

Cubes

Reflections and refractions were huge, and you totally nailed
them! Your scenes are looking more realistic than ever. In this
chapter, you're going to increase the scope of what’s possible by
adding a new primitive shape: the cube.

Check it out. Here’s a scene rendered entirely with cubes.



True, most of the cubes have been stretched and squashed in
various ways, but—cross my heart—they all started life as
perfect cubes.

In fact, they all started life as a very specific kind of cube, called
an axis-aligned bounding box. In this chapter, you’ll add
support for them by implementing a new ray intersection
algorithm, as well as the algorithm for finding the normal on the
surface of a cube.

An axis-aligned bounding box, or AABB, is a box with a special
property: its sides are all aligned with the scene’s axes. Two are
aligned with the x axis, two with the y axis, and two with the z
axis, like the figure.
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This particular constraint makes the intersection math much
less complex, which makes the computer happier and ought to
make you happier as well. The cube logic in your ray tracer will
implement these AABBs, so your cubes will always begin
centered at the origin and extend from -1 to +1 along each axis.

From there, you can use transformation matrices to scale,
rotate, and translate them into any orientation you like.

You've already done most of the hard work in previous chapters,
building a framework for supporting, transforming, and
intersecting primitive shapes. That’s awesome! That means this
chapter only needs to focus on two things: the ray-cube
intersection algorithm, and the algorithm for finding the normal
on the cube.

Let’s start with the intersection algorithm.



Intersecting a Ray with a Cube

The intersection algorithm must decide whether a given ray
intersects any of the cube’s six faces or whether the ray misses
the cube altogether. Treat those two cases as tests, starting with
the first one: a ray intersecting a cube.

TEST #1: A RAY INTERSECTS A CUBE

Show that the local_intersect function for a cube correctly
identifies intersections on any face.

This test creates a single cube and then casts a ray at each of its
faces to show that the algorithm works correctly from all six
directions.

features/cubes.feature

Scenario Outline: A ray intersects a cube
Given c « cube()
Andr ~ ray(<origin>, <direction>)
When xs  local_intersect(c, r)
Then xs.count = 2
And xs[0].t = <t1>
And xs[1].t = <t2>

Examples:

| | origin | direction | t1]t2 |

| +x | point(5, 0.5, 0) | vector(-1,0,0)| 4| 6|
| -x | point(-5, 0.5, 0) | vector(1,0,0) | 4| 6|

| +y | point(0.5, 5, 0) | vector(0,-1,0)| 4| 6|
|-y | point(0.5, -5, 0) | vector(0, 1,0) | 4| 6|

| +z | point(0.5, 0, 5) | vector(0, 0, -1)| 4| 6 |

|-z | point(0.5, 0, -5) | vector(0,0,1) | 4| 6|

| inside | point(0, 0.5, 0) | vector(0,0,1) |-1| 1|

The test also casts a ray from inside the cube, to show that the
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algorithm handles that case as well.

This works by treating a cube as it were composed of six planes,
one for each face of the cube. Intersecting a ray with that cube
involves testing it against each of the planes, and if the ray
intersects them in just the right way, it means that the ray
intersects the cube, as well. Let’s consider the algorithm at a
simpler level, first, to build some intuition about how it works.
Start by looking at the following figure. It shows a ray
intersecting a 2D square.



The first step is to find the t values of all the places where the ray
intersects those lines, like this:



Next, consider them in parallel pairs. The following figure
highlights the pairings with two blue intersections on two
parallel blue lines, and two yellow intersections on two parallel



yellow lines:

For each pair of lines, there will be a minimum t closest to the
ray origin, and a maximum t farther away. Focus on the largest



of all the minimum t values and the smallest of all the maximum
t values, like so:
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The intersection of the ray with that square will always be those



two points: the largest minimum t value and the smallest
maximum t value. This works for any number of dimensions,
too. In three dimensions, you intersect planes instead of lines,
but you still consider them in parallel pairs.

In pseudocode, the intersection routine itself looks like this:

function local_intersect(cube, ray)
xtmin, xtmax « check_axis(ray.origin.x, ray.direction.x)
ytmin, ytmax ~ check_axis(ray.origin.y, ray.direction.y)
ztmin, ztmax — check_axis(ray.origin.z, ray.direction.z)

tmin « max(xtmin, ytmin, ztmin)
tmax « min(xtmax, ytmax, ztmax)

return ( intersection(tmin, cube), intersection(tmax, cube) )
end function

For each of the x, y, and z axes, you’ll check to see where the ray
intersects the corresponding planes and return the minimum
and maximum t values for each. Once you've found those points
of intersection, you find the actual points of intersection by
taking the largest of the minimum t values and the smallest of
the maximum t values.

The helper function, check_axis, looks like this in pseudocode:

function check_axis(origin, direction)
tmin_numerator = (-1 - origin)
tmax_numerator = (1 - origin)

if abs(direction) >= EPSILON
tmin « tmin_numerator / direction
tmax — tmax_numerator / direction
else
tmin < tmin_numerator * INFINITY
tmax « tmax_numerator * INFINITY
end if



if tmin > tmax then swap(tmin, tmax)

return tmin, tmax
end function

This takes the ray-plane intersection formula that you used in
Chapter 9, Planes, and generalizes it to support planes that are
offset from the origin. Specifically, each pair of planes is offset 1
unit in opposing directions, hence -1 - origin and 1 - origin.

If the denominator (direction) is effectively zero, though, you
don’t want to be dividing by it. The previous pseudocode
handles this case by multiplying the numerators by infinity,
which makes sure tmin and tmax—while both being infinity—have
the correct sign (positive or negative).

If your programming language natively handles infinity and

floating-point division by zero, you can avoid most of the song
( and dance in check_axis and just divide the numerators by the
denominator. No special case needed when direction is zero!

NG

Implement this, and make that first test pass. Once you've got it
working, move on to the next test!

TEST #2: A RAY MISSES A CUBE

Show that the local_intersect function for a cube handles the case
where the ray misses the cube.

Once again, the test creates a single cube, but this time the rays
are cast in such a way that they miss the cube. Some are cast



parallel to different faces, others are just cast diagonally away
from the cube.

features/cubes.feature

Scenario Outline: A ray misses a cube
Given c ~ cube()
Andr ~ ray(<origin>, <direction>)
When xs ~ local_intersect(c, r)
Then xs.count = 0

Examples:

| origin | direction |

| point(-2, 0, 0) | vector(0.2673, 0.5345, 0.8018) |
| point(0, -2, 0) | vector(0.8018, 0.2673, 0.5345) |
| point(0, 0, -2) | vector(0.5345, 0.8018, 0.2673) |
| point(2, 0, 2) | vector(0, 0, -1) |

| point(0, 2, 2) | vector(0, -1, 0) |

| point(2, 2, 0) | vector(-1, 0, 0) |

In each case, though, the ray should miss the cube, resulting in

zero intersections.

Consider it from a two-dimensional perspective again. In the
following configuration, the ray misses the square:

/7
Once again, find the points of intersection with the two pairs of

lines, and then find the largest of the minimum t values and the
smallest of the maximum t values, like this:

,

/.
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Look closely: the minimum t is farther from the ray origin than
the maximum t! Well, that clearly makes no sense, and the
contradiction is your clue that the ray misses the square.

The following pseudocode adds one line to the previous
implementation, testing for that case.

function local_intersect(cube, ray)
xtmin, xtmax — check_axis(ray.origin.x, ray.direction.x)
ytmin, ytmax — check_axis(ray.origin.y, ray.direction.y)
ztmin, ztmax  check_axis(ray.origin.z, ray.direction.z)

tmin « max(xtmin, ytmin, ztmin)
tmax — min(xtmax, ytmax, ztmax)

return () if tmin > tmax

return ( intersection(tmin, cube), intersection(tmax, cube) )
end function

Once you've got that test passing, you're ready to implement the
last bit for cubes: calculating the normal vector.



Finding the Normal on a Cube

Recall that the normal is the vector that points outward
perpendicularly from a surface. Your ray tracer uses it to
compute a variety of effects, including shading, reflection, and
refraction. Fortunately, the algorithm for finding the normal on
a cube is elegant and short—two delightful attributes!

Let’s jump right into the test.

TEST #3: THE NORMAL ON A CUBE

Show that the local_normal_at function correctly computes the
normal at various points on a cube.

Now, each face of a cube is a plane with its own normal. This
normal will be the same at every point on the corresponding
face. The following test demonstrates this by finding the normal
at various points on a cube.

features/cubes.feature

Scenario Outline: The normal on the surface of a cube
Given c — cube()
And p ~ <point>
When normal ~ local_normal_at(c, p)
Then normal = <normal>

Examples:

| point | normal |

| point(1, 0.5, -0.8) | vector(1, 0, 0) |
| point(-1, -0.2, 0.9) | vector(-1, 0, 0) |
| point(-0.4, 1, -0.1) | vector(0, 1, 0) |
| point(0.3, -1, -0.7) | vector(0, -1, 0) |
| point(-0.6, 0.3, 1) | vector(0, 0, 1) |
| point(0.4, 0.4, -1) | vector(0, O, -1) |
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| point(1, 1, 1) | vector(1, 0, 0) |
| point(-1, -1, -1) | vector(-1, 0, 0) |

Note that this test also demonstrates the normal at two of the
cube’s corners, to make sure that case is handled consistently.
Specifically, it assumes that the corners are treated as positions
on either the +x or x faces, and returns the normal for that face.

To understand how the algorithm for this will work, note that all
the points on the +x face have a normal pointing in the +x
direction, like this:



Picking a few points at random from that face gives us the
following list:

e (1.0,0.0, -0.4)

e (1.0,-0.5,0.6)



e (1.0,0.1,0.9)

e (1.0,-0.9,0.7)

What do you notice here? Perhaps you see that the x component
is not only 1, but is also always greater than any of the other
components? Hold that thought!

Consider the following list of points on the -y face of a cube:

(-0.2, -1.0, 0.5)

(0.1, -1.0,-0.9)

(0.8, -1.0, 0.9)

(-0.7, -1.0, 0.0)

Here, the y component is always -1.0, and is less than any of the
other components.

One more list. Try and figure out which face of a cube each of
the following points is from:

(-1.0, 0.3, -0.5)

(0.3,-0.9, 1.0)

(-0.6, 1.0, 0.7)

(0.4,-1.0,0.2)

The face is always the one matching the component whose
absolute value is a 1!

Now, in practice, you can’t trust that the points you get will have



components that exactly equal 1.0 (curse you, floating point
rounding!), but you can make it work by choosing the
component with the largest absolute value. The following
pseudocode illustrates how your local_normal_at function should

work for cubes.

function local_normal_at(cube, point)
maxc — max(abs(point.x), abs(point.y), abs(point.z))

if maxc = abs(point.x) then
return vector(point.x, 0, 0)
else if maxc = abs(point.y) then
return vector(0, point.y, 0)
end if

return vector(0, 0, point.z)
end function

In other words, find the component with the largest absolute
value. If that’s x, return a vector pointing in that direction. If it’s

y, return a vector pointing in that direction, and so forth.

Make that test pass, and your cube is done!



Putting It Together

Your ray tracer now supports spheres, planes, and cubes. How
awesome is that? By all means, experiment and see what you
can make by combining the three primitives, but first: what can
you make using only cubes?

Try it out. Form a room out of a large cube. Make a table out of
five cubes: four for the legs, and one for the table’s surface. Put
a box on the table. Scatter some boxes on the floor.

Here’s another challenge: using only two cubes, can you make a
room whose floor and ceiling have a different texture than the
walls?

You can also make these algorithms faster. For example, when
comparing a ray with the cube’s sides, the algorithm insists on
checking all six planes, even if it’s clear by the first or second
comparison that the ray misses. In a production-quality ray
tracer, this kind of wastefulness would be unacceptable. How
might you optimize it? What can you do to minimize the
number of comparisons it makes?

Ponder that for a bit, if you like. When you’re ready, read on. In
the next chapter you’ll add two more primitives: cylinders and
cones.

Copyright © 2019, The Pragmatic Bookshelf.



Chapter 13

Cylinders

Next up is the mighty cylinder. It plays nicely with your existing
suite of graphics primitives, and it’s fantastic for representing
all sorts of things: arms, legs, necks, fingers, and torsos, as well
as columns, pipes, and table legs. Here’s an example of
cylinders in various configurations to give you a taste of how
versatile this shape can be:



As with all your other shapes, you’ll use cylinders by
instantiating them at the origin and then transforming them
into the size and position you need. For convenience, you’ll give
the cylinders a default radius of 1, but the way the math works
out they’ll all be infinitely long, extending to infinity in both +y
and -y. Since trying to do anything useful with an infinitely long
cylinder is tricky, you’ll also implement controls to allow your
cylinders to be truncated at one or both ends, and to be either
open or capped.

You'll tackle all of this in a few steps:

1. Implement the basic intersection algorithm for an infinite cylinder
of radius 1.

2. Compute the normal vector for a cylinder.

3. Add support for truncating the cylinder. By default, a truncated



cylinder is open, or hollow.

4. Add support for end caps, to allow the cylinder to be closed, or
solid.

5. Compute the normal vector on the end caps.

Lastly, as a bonus, you’ll see, briefly, how to intersect a ray with
a cone, the algorithm for which just happens to be very similar
to that of a cylinder.

Are you ready for this? Here goes!



Intersecting a Ray with a Cylinder

Either the ray misses the cylinder or it hits the cylinder. Right?
This dichotomy neatly describes the tests you’ll write first. You’'ll
start by confirming that a ray misses a cylinder. Such tests can
be made to pass trivially, but rather than passing them by
making your local_intersect method do nothing, this provides a
good opportunity to start actually implementing the
intersection routines.

TEST #1: A RAY MISSES A CYLINDER

Show that the local_intersect function correctly identifies when a
ray misses a cylinder.

This test creates a cylinder and casts three different rays at it.
The first ray is positioned on the surface and points along the +y
axis, parallel to the cylinder. The second is inside the cylinder
and also points along the +y axis. The third ray is positioned
outside the cylinder and oriented askew from all axes. All three
should miss the cylinder.

features/cylinders.feature

Scenario Outline: A ray misses a cylinder
Given cyl « cylinder()
And direction ~ normalize(<direction>)
Andr ~ ray(<origin>, direction)
When xs ~ local_intersect(cyl, r)
Then xs.count = 0

Examples:
| origin | direction |
| point(1, 0, 0) | vector(0, 1, 0) |
| point(0, 0, 0) | vector(0, 1, 0) |
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| point(0, 0, -5) | vector(1, 1, 1) |

The algorithm that implements this shares some features with
the ray-sphere intersection algorithm. As with the sphere
algorithm, you’ll compute a discriminant value, which will be
negative if the ray does not intersect. Here’s some pseudocode:

function local_intersect(cylinder, ray)
a « ray.direction.x? + ray.direction.z?

# ray is parallel to the y axis
return () if a is approximately zero

b « 2 ray.origin.x ray.direction.x +
2 ray.origin.z ray.direction.z
C « ray.origin.x? + ray.origin.z? - 1

disc « b2-4 a ¢

# ray does not intersect the cylinder
return () if disc <0

# this is just a placeholder, to ensure the tests
# pass that expect the ray to miss.
return ( intersection(1, cylinder) )

end function

Note that the last line of the function, returning a single
intersection at t=1, ensures that the tests pass because the ray

truly misses the cylinder and not simply because the function
wasn’t doing anything else. You’ll flesh that bit out next, in test
#2.

TEST #2: A RAY HITS A CYLINDER

Show that the local_intersect function correctly identifies when a
ray hits a cylinder.

Once again, the scenario outline creates three different rays,



each of which is expected to intersect the cylinder. The first is
configured to strike the cylinder on a tangent, but even though
the actual intersection is at a single point, you’ll still make your
code return two intersections, both at t=5. (This mimics how you
handled tangent intersections in Chapter 5, Ray-Sphere
Intersections, and will help with determining object overlaps in
Chapter 16, Constructive Solid Geometry (CSG).) The second
ray intersects the cylinder perpendicularly through the middle
and results in two intersections at 4 and 6. The last ray is
skewed so that it strikes the cylinder at an angle.

features/cylinders.feature

Scenario Outline: A ray strikes a cylinder
Given cyl ~ cylinder()
And direction — normalize(<direction>)
And r ~ ray(<origin>, direction)
When xs ~ local_intersect(cyl, r)
Then xs.count = 2
And xs[0].t = <t0>
And xs[1].t = <t1>

Examples:
| origin | direction [t0  |t1 |
| point(1, 0, -5) | vector(0,0,1) |5 | 5 |
| point(0, O, -5) |vector(0,0,1) |4 |6 |
| point(0.5, 0, -5) | vector(0.1, 1, 1) | 6.80798 | 7.08872 |
Make this pass by using the discriminant to find the t values for

the points of intersection. The highlighted lines in the following
pseudocode demonstrate the calculation you need:

function local_intersect(cylinder, ray)
a « ray.direction.x? + ray.direction.z?

# ray is parallel to the y axis
return () if a is approximately zero

b « 2 ray.origin.x ray.direction.x +
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2 ray.origin.z ray.direction.z
C « ray.origin.x? + ray.origin.z? - 1

disc « b2-4 a ¢

# ray does not intersect the cylinder
return () if disc <0

t0 « (-b-V(disc)) /(2 * a)
tl < (-b +V(disc)) / (2 * a)

return ( intersection(t0, cylinder), intersection(t1, cylinder) )
end function

All that’s left before you can actually render this cylinder is to
compute the normal vector.



Finding the Normal on a Cylinder

Once you know the points of intersection, the normal vector is
used to help shade the surface appropriately. You’'ll only need
one scenario to cover this bit.

TEST #3: NORMAL VECTOR ON A CYLINDER

Show that the normal vector on the surface of a cylinder is
computed correctly.

This scenario chooses four points on the surface of the cylinder,
one each at +x, -x, +z and -z, and shows that the normal is the

expected value at each point.

features/cylinders.feature

Scenario Outline: Normal vector on a cylinder
Given cyl ~ cylinder()
When n « local_normal_at(cyl, <point>)
Then n = <normal>

Examples:
| point | normal |
| point(1, 0, 0) | vector(1, 0, 0) |
| point(0, 5, -1) | vector(0, 0, -1) |
| point(0, -2, 1) | vector(0, 0, 1) |
| point(-1, 1, 0) | vector(-1, 0, 0) |

To accomplish this, take the point in question and remove the y

component. Treating the result as a vector gives you the normal.
In pseudocode, it looks like this:

function local_normal_at(cylinder, point)
return vector(point.x, 0, point.z)
end function
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With those tests passing, your ray tracer can render cylinders!
They’ll be infinitely long, which might be a bit unwieldy, but
with a bit of imagination you can do all kinds of interesting
things with them. Give it a try! When you come back, we will
look at truncating those cylinders to make them easier to use.



Truncating Cylinders

Imagine a world where table legs stretch forever in both
directions, where pencils can never be sharpened because they
have no end, and where cars roll around on wheels that are
infinitely wide. What a mess! Perhaps Salvador Dali could make
something out of that, but for the rest of us, such cylinders are
hard to use well. To make them more useful you can truncate
them, chopping them off at one or both ends.

For your ray tracer, you'll implement truncated cylinders by
permitting a minimum and a maximum y value to be given for
each cylinder. For example, the cylinder only exists between y=-1
and y=2 as shown in the figure.



q-a:-l

Note that the extents are exclusive, meaning if the cylinder is
truncated at y=2, the cylinder extends up to—but not including—

that limit.



You'll need just two tests for this feature: one that adds the new
attributes and one that updates the intersection logic to support
the truncated cylinders. Start with the new attributes.

TEST #4: MINIMUM AND MAXIMUM BOUNDS

Demonstrate the default values for a cylinder’s minimum and
maximum bounds.

This scenario creates a new cylinder and shows that the
minimum defaults to negative infinity and the maximum
defaults to positive infinity.

features/cylinders.feature

Scenario: The default minimum and maximum for a cylinder
Given cyl « cylinder()
Then cyl.minimum = -infinity
And cyl.maximum = infinity
The minimum and maximum always refer to units on the y axis
and are defined in object space. The next test shows how you
use these attributes to actually truncate a cylinder.

TEST #5: TRUNCATED CYLINDERS

Show that the cylinders in your ray tracer can be truncated at
either end.

This scenario sets up a cylinder, truncates it at y=1 and y=2, and
then casts several rays at it in order to make sure that the
truncated cylinder is being intersected correctly.

features/cylinders.feature

Scenario Outline: Intersecting a constrained cylinder
Given cyl « cylinder()
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And cyl.minimum 1
And cyl.maximum ~ 2
And direction — normalize(<direction>)
Andr ~ ray(<point>, direction)
When xs ~ local_intersect(cyl, r)
Then xs.count = <count>

Examples:

| | point | direction | count |

| 1| point(0, 1.5, 0) | vector(0.1,1,0) |0 |
| 2 | point(0, 3, -5) |vector(0,0,1) |0 |

| 3 | point(0, O, -5) | vector(0,0,1) |0 |

| 4 | point(0, 2, -5) |vector(0,0,1) |0 |

| 5| point(0, 1, -5) |vector(0,0,1) |0 |

| 6| point(0, 1.5, -2) | vector(0, 0, 1) |2 |

Specifically, the examples cast the following rays:

e Example 1 casts a ray diagonally from inside the cylinder, with the
ray escaping without intersecting the cylinder.

e Examples 2 and 3 cast rays perpendicularly to the y axis, but from
above and below the cylinder, and also miss.

e Examples 4 and 5 are edge cases, showing that the minimum and
maximum y values are themselves outside the bounds of the
cylinder.

e The final example casts a ray perpendicularly through the middle of
the cylinder and produces two intersections.

The following figure shows how the scene is configured, with the
corresponding rays:



To make this work, change your local_intersect method so that it



computes the y coordinate at each point of intersection. If the y
coordinate is between the minimum and maxmium values, then the

intersection is valid. The following pseudocode shows how this
comes together:

t0 — (-b - V(disc)) / (2 * a)
tl « (-b+V(disc))/ (2 * a)
if t0 > t1 then swap(t0, t1)

xs = ()

y0 « ray.origin.y + t0 * ray.direction.y

if cylinder.minimum < y0 and y0 < cylinder.maximum
add intersection(t0, cylinder) to xs

end if

yl < ray.origin.y + tl1 * ray.direction.y

if cylinder.minimum < y1 and y1 < cylinder.maximum
add intersection(t1, cylinder) to xs

end if

return xs

With that change, your tests should all be passing. Next up:
solid cylinders!



Capped Cylinders

If you've played with your new truncated cylinders at all, you'll
have noticed that they’re hollow, like lengths of PVC pipe or
empty toilet paper rolls. This can be exactly the effect you need
sometimes, but at other times you really want the cylinders to
be capped, or closed at each end. To do that, you need to add
end caps—discs that exactly cover each end of the cylinder.

These discs are planes that are constrained to the cylinder’s
cross-section—and you implemented planes way back in
Chapter o,

Planes

. While you can’t exactly reuse your plane code for this, the
concepts will (hopefully!) look familiar.

You’ll add end caps to your cylinders in three steps:

1. Add a closed attribute to your cylinders, indicating that the
cylinders should be capped.

2. Update your cylinder’s local_intersect method to add checks for the
top and bottom end caps (if closed is true).

3. Update your cylinder’s local_normal_at method to compute the
normal on the end caps (again, if closed is true).

First, the closed attribute.

TEST #6: CLOSED CYLINDERS

Show that your cylinders possess a closed attribute, which



defaults to false.

Set up a new cylinder and show that the closed attribute is false,
by default.

features/cylinders.feature

Scenario: The default closed value for a cylinder
Given cyl « cylinder()
Then cyl.closed = false

Make that pass, and then you can move on to updating the
intersection algorithm.

TEST #7: INTERSECTING A CYLINDER’S END CAPS

Show that your intersection routine correctly finds the points
of intersection between a ray and a cylinder’s end caps.

This scenario outline sets up the same truncated cylinder as
before, between y=1 and y=2, but also makes the cylinder closed

before throwing rays at it.

features/cylinders.feature

Scenario Outline: Intersecting the caps of a closed cylinder
Given cyl « cylinder()
And cyl.minimum ~ 1
And cyl.maximum ~ 2
And cyl.closed « true
And direction —~ normalize(<direction>)
And r « ray(<point>, direction)
When xs — local_intersect(cyl, r)
Then xs.count = <count>
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Examples:
| | point | direction | count |
| 1| point(0, 3, 0) |vector(0,-1,0)|2 |
| 2 | point(0, 3, -2) | vector(0, -1,2) |2 |
| 3| point(0, 4, -2) | vector(0, -1, 1) |2 | # corner case
| 4 | point(0, 0, -2) | vector(0, 1,2) |2 |
| 5| point(0, -1, -2) | vector(0, 1, 1) |2 | # corner case

The ray in the first example starts above the cylinder and points
down through the cylinder’s middle, along the y axis. It should
intersect both end caps, resulting in two intersections.

Examples 2 and 4 originate (respectively) above and below the
cylinder and cast a ray diagonally through it, intersecting one
end cap before exiting out the far side of the cylinder. This also
results in two intersections.

Examples 3 and 5 are corner cases. These also originate
(respectively) above and below the cylinder, intersecting an end
cap, but they exit the cylinder at the point where the other end
cap intersects the side of the cylinder. In this case, there should
still be only two intersections: one with the first end cap and the
other where the second end cap meets the cylinder wall.

To implement this, you’ll add a new function, intersect_caps(cyl, ray,
xs). It checks to see if the given ray intersects the end caps of the

given cylinder, and adds the points of intersection (if any) to the
xs collection. Here it is in pseudocode:

# a helper function to reduce duplication.
# checks to see if the intersection at 't is within a radius
# of 1 (the radius of your cylinders) from the y axis.
function check_cap(ray, t)

X « ray.origin.x + t * ray.direction.x

Z « ray.origin.z + t * ray.direction.z

return (x2 + z2) <=1



end

function intersect_caps(cyl, ray, xs)
# caps only matter if the cylinder is closed, and might possibly be
# intersected by the ray.
if cyl is not closed or ray.direction.y is close to zero
return
end if

# check for an intersection with the lower end cap by intersecting
# the ray with the plane at y=cyl.minimum
t « (cyl. minimum - ray.origin.y) / ray.direction.y
if check_cap(ray, t)
add intersection(t, cyl) to xs
end if

# check for an intersection with the upper end cap by intersecting
# the ray with the plane at y=cyl.maximum
t « (cyl.maximum - ray.origin.y) / ray.direction.y
if check_cap(ray, t)
add intersection(t, cyl) to xs
end if
end function

First, the ray is intersected with a plane at the minimum extent.
Then, the point of intersection is tested (via the check_cap helper
function) to see if it lies within the radius of the cylinder. If it
does, the intersection is added to the collection. The same
process follows for the maximum extent.

Make sure your cylinder’s local_intersect function calls this new
function after it checks for intersections with the cylinder’s
walls. You'll also need to change the logic at the beginning of the
function so it doesn’t actually return when a is zero, otherwise
your cap intersection will be skipped and at least one of your
tests will fail. Instead, if a is zero, skip the cylinder intersection
logic and just call intersect_caps.



You're almost done, but before you can render these closed
cylinders, you need to update the calculation for the normal
vector to account for the end caps. That’s the very next test.

TEST #8: COMPUTING THE NORMAL VECTOR AT THE
END CAPS

Show that the normal vector calculation accounts for closed
cylinders, and returns the correct normal at the end caps.

This scenario outline creates a closed, truncated cylinder and
computes the normal at various points on each end cap:

features/cylinders.feature

Scenario Outline: The normal vector on a cylinder's end caps
Given cyl — cylinder()

And cyl.minimum ~ 1

And cyl.maximum ~ 2

And cyl.closed ~ true

When n — local_normal_at(cyl, <point>)

Then n = <normal>

Examples:

| point | normal |

| point(0, 1, 0) | vector(0, -1, 0) |
| point(0.5, 1, 0) | vector(0, -1, 0)
| point(0, 1, 0.5) | vector(0, -1, 0)
| point(0, 2, 0) | vector(0, 1, 0) |

| point(0.5, 2, 0) | vector(0, 1, 0) |
| point(0, 2, 0.5) | vector(0, 1, 0) |
The end caps are planes, which means an end cap has the same normal at
every point on it. The algorithm must check to see which end cap the point
corresponds to, or see if it lies on the cylinder itself, and return the

appropriate normal vector. In pseudocode, it looks like this:
function local_normal_at(cylinder, point)
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# compute the square of the distance from the y axis
dist — point.x? + point.z?

if dist < 1 and point.y >= cylinder.maximum - EPSILON
return vector(0, 1, 0)

else if dist < 1 and point.y <= cylinder.minimum + EPSILON
return vector(0, -1, 0)

else

return vector(point.x, 0, point.z)
end if

end function

If the point lies less than 1 unit from the y axis, and it lies within EPSILON
(see

Comparing Floating Point Numbers

) of the minimum or maximum extent, then it must be on one of the end caps.
It’s important that you include EPSILON here; if you don’t, you’ll wind up
with rendering glitches caused by the wrong normal vector being calculated
when floating point round-off causes the point to be slightly inside an end
cap.

That’s it, though. When that passes, you’ll be rendering capped, truncated
cylinders. Give it a shot!

The feature isn’t quite over yet, though. You’re going to wrap it up by
implementing the cone primitive.



Cones

Okay. Next you're going to add cones to your ray tracer, and it
turns out that cones are remarkably similar to cylinders. A true
cone has these features:

e Itis infinite in length, just like a cylinder.
e It can be truncated, just like a cylinder.

e It can be closed, just like a cylinder.

And I really do mean just like a cylinder. You may be able to
reuse a fair bit of the code you just wrote for cylinders.

Here’s where the challenge ramps up, though—I'm going to take
the training wheels off. No hand-holding. No safety nets. Just a
bit of explanation, a few tests, and a whole heap of confidence in
your ability to do just about anything you put your mind to.

You're going to implement what is called a double-napped cone,
which most folks would actually call two cones: one upside
down, the other right-side up, with their tips meeting at the
origin and extending toward infinity in both directions, as
depicted in the following figure.
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To render this, you’ll need to implement its intersection
algorithm and the algorithm to compute its normal vector.

The intersection algorithm works almost exactly like the
cylinder’s, but a, b, and c are computed differently. Given a ray’s
origin o and direction vector d, the following formulas replace
the ones you used for cylinders:

i = af-: = .',|r1—: = .-'fj}
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When a is zero, it means the ray is parallel to one of the cone’s
halves, like so:

Vs

As you can see, this still means the ray might intersect the other
half of the cone. In this case the ray will miss when both a and b
are zero. If a is zero but b isn’t, you'll use the following formula
to find the single point of intersection:

[ = =c/2h



If a is nonzero, you’ll use the same algorithm, but with the new a,
b, and ¢, that you used for the cylinders.

Here are two tests to help you double-check your cone
intersections:

features/cones.feature

Scenario Outline: Intersecting a cone with a ray
Given shape — cone()
And direction — normalize(<direction>)
And r ~ ray(<origin>, direction)
When xs ~ local_intersect(shape, r)
Then xs.count = 2
And xs[0].t = <t0>
And xs[1].t = <t1>

Examples:
| origin | direction [t0 |tl |
| point(0, 0, -5) | vector(0,0,1) |5 | 5 |
| point(0, O, -5) | vector(1, 1, 1) | 8.66025 | 8.66025 |
| point(1, 1, -5) | vector(-0.5, -1, 1) | 4.55006 | 49.44994 |

Scenario: Intersecting a cone with a ray parallel to one of its halves
Given shape — cone()
And direction — normalize(vector(0, 1, 1))
And r < ray(point(0, 0, -1), direction)
When xs ~ local_intersect(shape, r)
Then xs.count = 1
And xs[0].t = 0.35355

You’ll implement end caps for cones much as you did for
cylinders, but with one difference: whereas cylinders have the
same radius everywhere, the radius of a cone will change with y.
In fact, a cone’s radius at any given y will be the absolute value
of that y. This means the check_cap function will need to be
adjusted to accept the y coordinate of the plane being tested
(cone.minimum OT cone.maximum, respectively) and treat that as the
radius within which the point must lie.
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Here’s a test for the cone end caps to help you with your
implementation:

features/cones.feature

Scenario Outline: Intersecting a cone's end caps
Given shape — cone()
And shape.minimum ~ -0.5
And shape.maximum 0.5
And shape.closed ~ true
And direction — normalize(<direction>)
Andr ~ ray(<origin>, direction)
When xs  local_intersect(shape, r)
Then xs.count = <count>

Examples:
| origin | direction | count |
| point(0, 0, -5) | vector(0, 1,0) |0 |
| point(0, 0, -0.25) | vector(0, 1, 1) |2 |
| point(0, 0, -0.25) | vector(0, 1, 0) |4 |

Lastly, for the normal vector, compute the end cap normals just
as you did for the cylinder, but change the rest to the following,
given in pseudocode:

y « V(point.x2 + point.z?)
y « -y if point.y >0
return vector(point.x, y, point.z)

Again, here’s a test to help you out:

features/cones.feature

Scenario Outline: Computing the normal vector on a cone
Given shape — cone()
When n « local_normal_at(shape, <point>)
Then n = <normal>

Examples:
| point | normal
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| point(0, 0, 0) | vector(0, 0, 0) |
| point(1, 1, 1) | vector(1,-v2,1) |
| point(-1, -1, 0) | vector(-1, 1, 0) |

As with the infinite cylinder, a double-napped cone is a bit
unwieldy, but thanks to truncation, you can cut off any bits of
those double cones that you don’t want. If you want a traditional
unit cone, for example, you can truncate it at y=-1 and y=0, and
then translate it up 1 unit iny.



Putting It Together

You're now armed with quite a variety of graphics primitives:
spheres, planes, cubes, cylinders, and cones. What can you
make with them? Here are some ideas:

e An ice cream cone with one (or more!) scoops.
e The US Capitol building.

e An arrow.

e A lightbulb.

e Stonehenge.

e A spiral staircase.

e A picture frame.

e The Saturn V rocket.

¢ A pencil.

If you're feeling particularly ambitious, you might consider
trying a (simplified!) model of something organic: a tree, a dog,
or even a stick-figure person.

When you’re ready, turn the page. You’ll learn an easier way to
construct complex models, as well as an optimization you can
use to potentially reduce the number of intersection tests
required to render your scenes.

Copyright © 2019, The Pragmatic Bookshelf.



Chapter 14

Groups

Here you are, just a few more chapters to go before the end of
the book. By now you've spent some time playing with your
renderer, experimenting with shapes, patterns, and
composition, and you’'ve probably figured out that building a
scene with the primitives at your disposal involves a lot of
fiddling with transformations. Add a shape, scale it, translate it,
rotate it just so, and then repeat for every other shape you need
in your scene.

As your scenes grow in complexity, so too does the effort needed
to model them. Have you wished for a way to streamline things?
Wouldn'’t it be nice if you could group shapes together and
transform them as a unit?

Here’s an example that does just that. The following figure
shows three different views of a complex shape composed of
spheres, cylinders, and cones.



With your ray tracer in its current state, each sphere, cylinder,
and cone must be painstakingly transformed into place,
requiring careful tracking of each component and where it
needs to end up. But by grouping shapes together, complex
shapes can be constructed at the origin and then transformed as
a unit wherever and however you want.

In this chapter you’ll add support for groups of shapes, allowing
them to be nested as deeply you need, and as a bonus, you’ll also
read about how they can be used to optimize your ray tracer.



Implementing Groups

Groups are abstract shapes with no surface of their own, taking
their form instead from the shapes they contain. This allows you
to organize them in trees, with groups containing both other
groups and concrete primitives. The real killer feature of
groups, though, is that groups may be transformed just like any
other shape, and those transforms then apply implicitly to any
shapes contained by the group. You just put shapes in a group,
transform the group, and voila—it all applies as a single unit.

Let’s make this happen. You'll tackle this in several steps:

1. Create a new shape subclass called Group.

2. Add a new attribute to Shape, called parent, which refers to the
group that contains the shape (if any).

3. Write a function for adding shapes to a group.

4. Implement the ray-group intersection algorithm.

5. Implement the necessary changes to compute the normal on a
shape that is part of a group.

This section describes a bidirectional tree structure, where
parent nodes reference child nodes and child nodes reference

Q parent nodes. Not all programming languages make this easy to
implement. If your language makes this challenging, consider
reading through the entire chapter first, and then implement
the feature in your own way. If you get stuck, you can always
ask for tips on the forum.2°!



Start by creating your new Group class for aggregating shapes.

TEST #1: CREATING A NEW GROUP

A group is a shape, which starts as an empty collection of
shapes.

This test introduces a new function, group, which returns a new
Group instance. The test then shows that the group has its own
transformation (unsurprising, as it ought to be a Shape subclass),
and the collection it represents should be empty.

features/groups.feature

Scenario: Creating a new group
Given g — group()
Then g.transform = identity_matrix
And g is empty
Make that pass by adding a Group class, making it a container of
shapes, and making it behave like a Shape itself. The next test will

address the shape side of things by adding a parent attribute.

TEST #2: A SHAPE HAS A PARENT ATTRIBUTE

A shape has an optional parent, which is unset by default.

This test requires a new attribute on Shape, called parent, which
may be either unset (the default) or may be set to a Group
instance. You’ll see your old test_shape function from Refactoring
Shapes, used here as a generic shape to demonstrate the
addition of the new attribute.

features/shapes.feature

Scenario: A shape has a parent attribute
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Given s — test_shape()
Then s.parent is nothing

Next up, you'll write a function for adding shapes as children of
a group, linking them together in a kind of tree.

TEST #3: ADDING A CHILD TO A GROUP

Adding a child to a group makes the group the child’s parent
and adds the child to the group’s collection.

This test adds a new function, add_child(group, shape) and shows
how it is used to add a child shape to a group.

features/groups.feature

Scenario: Adding a child to a group
Given g — group()
And s — test_shape()
When add_child(g, s)
Then g is not empty
And g includes s
And s.parent = g

Make that pass, and you can start moving on to the fun stuff!
It’s time to intersect rays with these groups of shapes.

TESTS #4 AND 5: INTERSECTING A RAY WITH A
GROUP

Two tests show that a ray intersects a group if and only if the
ray intersects at least one child shape contained by the group.

The first test is the trivial case—casting a ray and checking to
see if it intersects an empty group. The resulting collection of

intersections should be empty.

features/groups.feature
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Scenario: Intersecting a ray with an empty group
Given g — group()
And r < ray(point(0, 0, 0), vector(0, 0, 1))
When xs ~ local_intersect(g, r)
Then xs is empty

The second test builds a group of three spheres and casts a ray
at it. The spheres are arranged inside the group so that the ray
will intersect two of the spheres but miss the third. The
resulting collection of intersections should include those of the
two spheres.

features/groups.feature

Scenario: Intersecting a ray with a nonempty group
Given g — group()
And s1 — sphere()
And s2 ~ sphere()
And set_transform(s2, translation(0, 0, -3))
And s3 ~ sphere()
And set_transform(s3, translation(5, 0, 0))
And add_child(g, s1)
And add_child(g, s2)
And add_child(g, s3)
When r < ray(point(0, 0, -5), vector(0, 0, 1))
And xs — local_intersect(g, r)
Then xs.count = 4
And xs[0].object = s2
And xs[1].object = s2
And xs[2].object = sl
And xs[3].object = s1

To make both of these tests pass, implement the local_intersect
function for your Group shape and have it iterate over all of the

group’s children, calling intersect on each of them in turn. It

should aggregate the resulting intersections into a single
collection and sort them all by t.

TEST #6: GROUP TRANSFORMATIONS
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Demonstrate that group and child transformations are both
applied.

This test creates a group and adds a single sphere to it. The new
group is given one transformation, and the sphere is given a
different transformation. A ray is then cast in such a way that it
should strike the sphere, as long as the sphere is being
transformed by both its own transformation and that of its
parent.

features/groups.feature

Scenario: Intersecting a transformed group
Given g ~ group()
And set_transform(g, scaling(2, 2, 2))
And s — sphere()
And set_transform(s, translation(5, 0, 0))
And add_child(g, s)
When r < ray(point(10, 0, -10), vector(0, 0, 1))
And xs ~ intersect(g, r)
Then xs.count = 2

The lovely thing about this test is that it should already pass if
your group’s local_intersect function calls intersect on its children.

Make sure this is so.

When you're ready, read on! The next piece of this puzzle
requires finding the normal vector on a child object.
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Finding the Normal on a Child Object

Remember back in Transforming Normals, when you used the
shape’s transformation matrix to manipulate the normal vector?
The same thing needs to happen when computing the normal
on a child object of a group, but now there’s a complication:
when an intersection is found with a group, the intersection
record itself references the intersected child. As your ray tracer
is currently implemented, this means that when you compute
the normal vector on that child object, only the child’s
transforms are considered, and not the transforms of any group
the child may belong to.

This is what you’ll work on next, in three steps:

e Write a function that converts a point from world space to object
space, recursively taking into consideration any parent object(s)
between the two spaces.

e Write a function that converts a normal vector from object space to
world space, again recursively taking into consideration any parent
object(s) between the two spaces.

e Update the normal_at function so that it calls these two new
functions to transform the incoming point and outgoing vector
appropriately.

Got it? Here goes!

TEST #7: CONVERT A POINT FROM WORLD SPACE
TO OBJECT SPACE

Take a point in world space and transform it to object space,
taking into consideration any parent objects between the two



spaces.

This test constructs an outer group, which contains an inner
group, which in turn contains a sphere. Each is given its own
transformation before calling a new function, world_to_object(shape,

point), to convert a world-space point to object space.

features/shapes.feature

Scenario: Converting a point from world to object space

Given g1  group()

And set_transform(g1, rotation_y(1/2))

And g2 ~ group()

And set_transform(g2, scaling(2, 2, 2))

And add_child(g1, g2)

And s — sphere()

And set_transform(s, translation(5, 0, 0))

And add_child(g2, s)
When p — world_to_object(s, point(-2, 0, -10))
Then p = point(0, 0, -1)

Make this test pass by implementing world_to_object(shape, point). If
shape has a parent, the function should first convert the point to
its parent’s space, by calling world_to_object(parent, point). The result

is then multiplied by the inverse of the shape’s transform. In
pseudocode, it looks like this:

function world_to_object(shape, point)
if shape has parent
point — world_to_object(shape.parent, point)
end if

return inverse(shape.transform) * point
end function

Next up, you'll convert a vector from object to world space.

TEST #8: CONVERT A NORMAL VECTOR FROM
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OBJECT SPACE TO WORLD SPACE

Take a normal vector in object space and transform it to world
space, taking into consideration any parent objects between
the two spaces.

This sets up two nested groups like in the previous test. Again,
each is given its own transformation, and then another new
function, normal_to_world(shape, normal), is used to transform a

vector to world space.

features/shapes.feature

Scenario: Converting a normal from object to world space

Given gl « group()

And set_transform(g1, rotation_y(mn/2))

And g2 — group()

And set_transform(g2, scaling(1, 2, 3))

And add_child(g1, g2)

And s ~ sphere()

And set_transform(s, translation(5, 0, 0))

And add_child(g2, s)
When n — normal_to_world(s, vector(vV3/3, V3/3, V3/3))
Then n = vector(0.2857, 0.4286, -0.8571)

You can make this test pass by first converting the given normal
to the parent object space using the algorithm you implemented
in Transforming Normals. Take the inverse of the shape’s
transform, transpose the result, and multiply it by the vector.
Normalize the result. Then, if the shape has a parent,
recursively pass the new vector to normal_to_world(parent, normal).
Here’s the implementation in pseudocode:

function normal_to_world(shape, normal)
normal — transpose(inverse(shape.transform)) * normal
normal.w — 0
normal — normalize(normal)
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if shape has parent
normal — normal_to_world(shape.parent, normal)
end if

return normal
end function

Once those tests are passing, you're ready to find the normal on
a child object.

TEST #9: FIND THE NORMAL ON AN OBJECT IN A
GROUP

Find the normal on a child object of a group, taking into
account transformations on both the child object and the
parent(s).

As with the previous two tests, this one sets up a hierarchy of
two groups and a sphere and assigns them each a
transformation. It then find the normal vector at a point on the
sphere (in world space), using the normal_at function.

features/shapes.feature

Scenario: Finding the normal on a child object
Given g1  group()
And set_transform(g1, rotation_y(1/2))
And g2 ~ group()
And set_transform(g2, scaling(1, 2, 3))
And add_child(g1, g2)
And s — sphere()
And set_transform(s, translation(5, 0, 0))
And add_child(g2, s)
When n « normal_at(s, point(1.7321, 1.1547, -5.5774))
Then n = vector(0.2857, 0.4286, -0.8571)

Next, update your normal_at function to use your new
world_to_object and normal_to_world functions, calling the former to
convert the world-space point to object space before calculating
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the normal, and then calling the latter to convert the normal
back to world space. In pseudocode, your updated normal_at
function should come together like this:

function normal_at(shape, world_point)
local_point — world_to_object(shape, world_point)
local_normal ~ local_normal_at(shape, local_point)
return normal_to_world(shape, local_normal)

end function

You're just about done with groups, but there’s one more bit to
address. In Transforming Patterns, you allowed patterns to be
transformed by converting points from world space to object
space, and from there to pattern space, before computing the
color. For those patterns to behave nicely when applied to
objects in groups, you’ll need to use this new world_to_object

function when converting points from world space to object
space. Otherwise, the patterns won’t apply the group
transformations and won’t look like you expect. You're on your
own for this one; make it so!

/ Joe asks:
- Where is the group’s local_normal_ at function?

Ah, you noticed it was missing! Well done, but it’s not a
mistake or oversight. Because normals are always
computed by calling the concrete shape’s local_normal_at
function, the group itself doesn’t need one. In fact, if your
code ever tries to call local_normal_at on a group, that means
there’s a bug somewhere.

Consider implementing local_normal_at for groups, but
having the implementation throw an exception or



otherwise cause an error. This can help you catch those
bugs earlier and makes it explicit that groups are abstract
and don’t have normal vectors.

That should about do it for your implementation of groups.
You’'ll work through an exercise shortly to get familiar with how
to use them, but first, let’s take a quick look at how these groups
can be used to optimize your ray tracer.



Using Bounding Boxes to Optimize Large
Scenes

One of the most computationally expensive things a ray tracer
does is find the intersections between a ray and an object, and
what makes things even worse is that it has to do this repeatedly
for every pixel. To render a scene of ten objects to a small
200x200 canvas, your ray tracer must perform at least
400,000 intersection tests, plus however many additional
intersections are needed to generate shadows, reflections, and
refraction. Adding insult to injury, the majority of those rays
won’t even come close to most of the objects in a typical scene.

What a waste, right? If only you could test just the objects that
were reasonably close to any given ray...

The good news is that there are a variety of different techniques
for teaching your ray tracer how to do this. They’re all a bit
beyond the scope of this book, but let’s take a quick look at one
of the least complicated: bounding boxes.

If that term seems familiar, it’s probably because you saw it
used back in Chapter 12, Cubes, when the cubes were called
axis-aligned bounding boxes (AABB). The idea behind this
optimization is to use these cubes, or bounding boxes, to
contain a group of other objects. Then, when intersecting the
group with a ray, you first test the ray against the bounding box.
If the ray misses, testing anything inside the box is pointless,
because it would have to miss them as well.

The following figure illustrates this with a bounding box that



contains three shapes. Since ray A misses the bounding box,
there’s no need to see if it intersects any of the shapes inside it.
However, because ray B does intersect the box, you’d need to try
that ray against the shapes it contains.

SEL

NS

I won’t walk you through this one, but give it a try anyway.
Although implementing this definitely has some fiddly bits, I
have faith in you! Here’s a basic outline of what you’ll need to
do:

1. Create a Bounds structure that describes the minimum and



maximum extents (coordinates) for the box. You can store these as
two points, where one has the minimum x, y, and z coordinates and
the other has the maximum.

2. Make a bounds(shape) function that returns the bounds for the given
shape, in object space. This is the untransformed bounds, so a
sphere (for example) will always extend from -1to 1in x, y, and z.
Some shapes (planes, untruncated cylinders, and others) will
extend to infinity in one or more dimensions, so make sure you can
handle that case.

3. Make a bounds(group) function that converts the bounds of all the
group’s children into “group space,” and then combines them into a
single bounding box. This is one of those fiddly bits! Here are two
tips, though. First, to convert a point from object space to its parent
space, multiply the point by the object’s transformation matrix.
Second, when transforming an entire bounding box, first transform
all eight of the cube’s corners, and then find a single bounding box
that fits them all. If you can’t quite see why you’d need to transform
all eight points, imagine rotating the box 45° around any axis, and
then figure out what the new axis-aligned bounding box ought to
look like.

4. Reuse your cube’s intersection algorithm, changing it so that it
accepts AABBs at arbitrary (but still axis-aligned) locations. To do
this, you’ll need to change the -1 and the 1 in the check_axis function
to be, respectively, the minimum and maximum value for the axis
being tested. So, if you are testing the z axis, and the bounding box
goes from z=-5 to z=3, you’d use -5 instead of -1, and 3 instead of 1.

5. Make the local_intersect(group, ray) function first test the ray against
the group’s bounding box. Only if the ray intersects the bounding
box should the ray be tested against the children.

As an example of how much this technique can help, I put
together the following scene of more than 280 marbles with
glass and metallic textures:



Rendered without bounding boxes at 1200x600 pixels, this
image required more than 1.8 billion intersection tests, of which
only 1% ever actually hit anything. By using sixteen bounding
boxes, though, and arranging them in a 4x4 grid so that all the
marbles were covered, the render required only a bit more than
180 million intersection tests, with 10% hitting something.
That’s an order of magnitude better, just by adding bounding
boxes!

Here’s the caveat, though: as with any optimization, it’s not a
guaranteed win in every situation. Not every scene will benefit
from bounding boxes, and some might even see worse
performance (depending on the objects in the scene and how
you organize them).

Still, it’s a useful optimization, and it will earn its keep in the



next chapter, Chapter 15, Triangles. Give it a shot!



Putting It Together

Let’s wrap this up with an example of how you can use groups in
your scenes. You are going to build a model of a hexagon using
cylinders and spheres, like this:

You'll build this by first defining a single instance of each
component: one sphere (to become the corners of the hexagon),
and one cylinder (to become the edges). You’ll transform each
into place once, and add them to a group. Then, you’ll create
duplicates of that group, rotating each duplicate around the y

axis until the whole hexagon is constructed.

Start by writing a function that creates the prototypical sphere



component, scaling it by 25% and translating it -1 unit in z. The
following pseudocode shows this as a function named

hexagon_corner.

function hexagon_corner()
corner — sphere()
set_transform(corner, translation(0, 0, -1) *
scaling(0.25, 0.25, 0.25))
return corner
end function

Remember that when you combine matrix transformations, you
do so in reverse order. Thus, though the pseudocode for
hexagon_corner multiplies the translation by the scaling, the
result is that the sphere is scaled first and then translated.

4

Next, write a function that creates the prototypical cylinder
component. Limit it to a minimum of y=0 and a maximum of y=1,

and scale it by 25% in x and z. Rotate it -n/2 radians in z (to tip it
over) and -n/6 radians in y (to orient it as an edge). Then,
translate it -1 unit in z. In pseudocode, this hexagon_edge function
might look like this:

function hexagon_edge()
edge — cylinder()
edge.minimum ~ 0
edge.maximum ~ 1
set_transform(edge, translation(0, 0, -1) *
rotation_y(-1/6) *
rotation_z(-m/2) *
scaling(0.25, 1, 0.25))
return edge
end function



The next step is to join those two primitives into a group,
forming one side of the hexagon. The following hexagon_side

function demonstrates this in pseudocode.

function hexagon_side()
side « group()

add_child(side, hexagon_corner())
add_child(side, hexagon_edge())

return side
end function

Once you've got a function that can return a single side of the
hexagon, you can write the final function, hexagon, which calls

hexagon_side six times and rotates each piece into place, like so:

function hexagon()
hex — group()

forn « 0to 5
side — hexagon_side()
set_transform(side, rotation_y(n*mn/3))
add_child(hex, side)

end for

return hex
end function
From there, you can add a light source and a camera, and go
nuts with it!

What other composite shapes can you build? Try creating a stick
figure or an automobile. Trees and plants are definitely possible,
too, and lend themselves well to fractal algorithms like
Lindenmayer systems.

Also, you may soon realize that materials applied to a group



have no effect at all on the shapes it contains. What if you
wanted the shapes in your ray tracer to be able to “inherit”
materials from their parents? How might you extend your code
to make that happen?

Give it some thought. Then, once you've played with this new
feature enough, read on. You’ll add your final primitive in the
next chapter: the triangle.

Footnotes

[20] http://forum.raytracerchallenge.com
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Chapter 15

Triangles

The final primitive in your ray tracer might seem an odd choice:
the triangle. By itself, its utility is perhaps questionable, but
where it really shines is when you use hundreds or thousands of
them together to construct a surface.

Here’s an example of a scene composed of more than fifteen
thousand triangles:



In the purple teddy bear, you can clearly see the facets and planes that betray
the model’s triangular composition. Even the cow, if you take a magnifying
glass to the image, would show similar (if finer) faceting. But that teapot,
now! Is it truly composed of triangles as well?

Oh, yes, it is. And in this chapter you’ll not only add support for polygonal
models like the teddy bear and the cow, but also normal interpolation to make
models like the teapot appear flawlessly smooth.

Let’s jump into it!



Triangles

While it’s certainly possible to implement a triangle primitive at
the origin, with unit dimensions, and then transform it into
place like you've done with every other primitive you’'ve
implemented, it turns out that it makes these triangles really
difficult to use well. So, your triangle primitive will actually
accept three parameters, describing the location of each of its
corners in object space. You can still transform the triangle as
well, if needed.

Your implementation of triangles will follow these steps:

1. Create the triangle shape itself, precomputing several values to
optimize the intersection calculations.

2. Implement the local_normal_at function to compute the normal
vector for triangles.

3. Implement the Moller—Trumbore ray-triangle intersection
algorithm. This will occupy several tests.

Ready, set, go!

TEST #1: CREATING A TRIANGLE

A triangle is a shape composed of three points. The constructor
ought to precompute two edge vectors and the triangle’s
normal.

Given three points, instantiate a triangle. Then show that each
point is initialized and that two edge vectors and the normal
vector are all precomputed.



features/triangles.feature

Scenario: Constructing a triangle
Given pl1 < point(0, 1, 0)
And p2 — point(-1, 0, 0)
And p3 ~ point(1, 0, 0)
And t ~ triangle(pl, p2, p3)
Then t.p1 =p1l
And t.p2 = p2
And t.p3 = p3
And t.el = vector(-1, -1, 0)
And t.e2 = vector(1, -1, 0)
And t.normal = vector(0, 0, -1)

Your ray tracer will eventually use those two edge vectors, el
and e2, to determine if and where the ray intersects the triangle.
It will also use that normal vector as the normal at every point of
intersection. While you could certainly calculate those three
values for every hit, they’ll always be the same everywhere on

the triangle. Save your ray tracer some work and precompute
them when the shape is constructed, as follows:

€l ==
€2 = —

narmal = pornealize [cross| ey, ey )
With the normal vector precomputed, the next test almost writes
itself.

TEST #2: NORMAL VECTOR FOR A TRIANGLE

The triangle’s precomputed normal is used for every point on
the triangle.

Once you’ve got your triangle function precomputing the normal
vector, the local_normal_at(triangle, point) function should simply
return that vector for every point it is given.
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features/triangles.feature

Scenario: Finding the normal on a triangle
Givent « triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
When nl « local_normal_at(t, point(0, 0.5, 0))
And n2 —~ local_normal_at(t, point(-0.5, 0.75, 0))
And n3 ~ local_normal_at(t, point(0.5, 0.25, 0))
Then n1 = t.normal
And n2 = t.normal
And n3 = t.normal

Go ahead and make this pass by implementing local_normal_at for
triangles and have it return the precomputed normal vector.

The next five tests will all deal with the intersection algorithm.

TESTS #3 TO 7: INTERSECTING A RAY WITH A
TRIANGLE

A ray that misses a triangle should not add any intersections
to the intersection list. A ray that strikes a triangle should add
exactly one intersection to the list.

These five tests introduce the behavior of the ray-triangle
intersection algorithm. The specific algorithm that you’ll
implement is the Moller—Trumbore algorithm, ! which is fast,
short, and has the handy side effect of precomputing a few
values that you’ll use later in the chapter for implementing
smooth triangles. You'll build your implementation of this
algorithm in pieces, with each test exercising a bit more of it.

For this first test, start by creating a triangle. Then, position a
ray such that it is cast parallel to the surface of the triangle. The

ray should miss the triangle.

features/triangles.feature
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Scenario: Intersecting a ray parallel to the triangle
Given t — triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r  ray(point(0, -1, -2), vector(0, 1, 0))
When xs ~ local_intersect(t, 1)
Then xs is empty

Make that test pass by crossing the ray direction with e2, and
then dotting the result with e1 to produce the determinant. If the
result is close to zero, then the ray is parallel to the triangle and
misses. Here’s some pseudocode for the first part of the
algorithm, handling this specific case.

function local_intersect(triangle, ray)
dir_cross_e2 « cross(ray.direction, triangle.e2)
det — dot(triangle.el, dir_cross_e2)
return () if abs(det) < EPSILON

# a bogus intersection to ensure the result isn't a false positive
return ( intersection(1, triangle) )
end function

Note the bogus intersection being returned at the end; this is
purely to prevent false positives when testing. Without that, if
you have an error in your function and it fails to recognize that
the ray misses, it would (at this point) still return without
adding an intersection, which the test would take to mean that
the function is working correctly. Adding the bogus intersection
ensures that the test fails if your implementation is wrong.
You’ll remove that bogus line soon, after you've implemented
the entire algorithm.

The next three tests set up the same triangle and then configure
a ray so that it misses the triangle over one of its edges. For the

first test, the ray passes beyond the p1-p3 edge.

features/triangles.feature
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Scenario: A ray misses the p1-p3 edge
Given t — triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r  ray(point(1, 1, -2), vector(0, 0, 1))
When xs ~ local_intersect(t, 1)
Then xs is empty

To make this pass, add the following calculations just before the
bogus intersection in your local_intersect function.

f « 1.0/ det

pl_to_origin ~ ray.origin - triangle.p1
u « f*dot(pl_to_origin, dir_cross_e2)
return ()ifu<Ooru>1

If that u value is not between 0 and 1, inclusive, the ray misses.

The next two tests configure the ray to pass beyond the p1-p2
and p2-p3 edges of the triangle.

features/triangles.feature

Scenario: A ray misses the p1-p2 edge
Given t « triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
Andr < ray(point(-1, 1, -2), vector(0, 0, 1))
When xs  local_intersect(t, r)
Then xs is empty

Scenario: A ray misses the p2-p3 edge
Given t « triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r  ray(point(0, -1, -2), vector(0, 0, 1))
When xs ~ local_intersect(t, r)
Then xs is empty

You can make these pass by implementing the following
calculations, again putting them just before the bogus
intersection at the end of your function.

origin_cross_el — cross(pl_to_origin, triangle.el)
v « f* dot(ray.direction, origin_cross_e1)
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return ()if v<Qor(u+v)>1

Finally, you need to handle the case where the ray actually
strikes the triangle. This last test creates the triangle again, but
arranges the ray so that it intersects it, and confirms that an
intersection exists at the correct distance.

features/triangles.feature

Scenario: A ray strikes a triangle
Given t « triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r ~ ray(point(0, 0.5, -2), vector(0, 0, 1))
When xs ~ local_intersect(t, r)
Then xs.count = 1
And xs[0].t =2

Replace the bogus intersection at the end of the triangle’s
local_intersect function with the following logic, to produce the

actual intersection.

t = f * dot(triangle.e2, origin_cross_e1)
return ( intersection(t, triangle) )

Once those tests are all passing, you should be able to render
some triangles. Feel free to render them singly if you want, but
they become much more interesting in groups. Think about how
you would construct a three-or four-sided pyramid from
triangles. How about an octahedron? Or if you want to get really
ambitious, consider more complex polyhedra, like the
dodecahedron in the image.
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Ultimately, though, arranging triangles by hand is difficult to do
well. It’s far easier to use a 3D modeling tool to construct a
shape, and then export it to a file. The next section will walk you
through the process of implementing a parser for one of the
most common 3D model file formats, which will allow you to
import more complex models into your scenes.



Wavefront OBJ Files

The Wavefront OBJ file format is a common format for storing
and sharing 3D graphics data. Like the PPM image format that
you implemented way back in Chapter 2, Drawing on a Canvas,
the OBJ format is plain text, which means you can view, edit,
and even create these files in any text editor, though it’s much
easier to model something in a 3D modeling tool and then
export it to OBJ.

The OBJ format consists of statements, each of which occupies
a single line. Each statement is prefaced with a command,
followed by a space-delimited list of arguments. For example,
the following OBJ file defines three vertices (v), and a triangle (¥,

for “face”) that references those vertices.

v15213
v1.4-1.20.12
v-0.10-1.3

f123

There are quite a few other statement types as well, but you only
need to recognize a handful of them in your ray tracer. You'll
implement this parser in six steps:

1. Begin with a parser that silently ignores all unrecognized
statements.

2. Add support for vertices to the parser.

3. Add support for triangles.

4. Implement triangulation of convex polygons, so that your parser
can import those, too.

5. Add support for groups of polygons within a model.



6. Export the entire model as a Group instance, so that you can add it
to a scene to be rendered.

Let me reiterate that you’ll be using Group instances to represent
these groups of triangles. While this technique is
straightforward to explain, it’s unfortunately not the most
optimal way to represent this kind of data. If you're interested
in optimizing your ray tracer, you might investigate a structure
called a triangle mesh, which can be stored and processed a bit
more efficiently.

For now, though, groups of triangles will be fine. Let’s get
started!

TEST #8: OBJ PARSER WITH GIBBERISH INPUT

The parser should silently ignore any unrecognized
statements.

Since your parser will only handle a subset of the OBJ format,
you need to make sure it doesn’t choke when given a model that
contains statements you haven’t implemented yet. The
following test introduces a function called parse_obj_file(file),
which returns a data structure encapsulating the contents of the
(ostensibly OBJ-formatted) file.

features/obj_file.feature

Scenario: Ignoring unrecognized lines
Given gibberish  a file containing:
There was a young lady named Bright
who traveled much faster than light.
She set out one day
in a relative way,
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and came back the previous night.

e

When parser — parse_obj_file(gibberish)
Then parser should have ignored 5 lines

In this case, it parses a file containing gibberish, and the
resulting parser notes how many lines were ignored.

TEST #9: OBJ FILE WITH VERTEX DATA

The parser should process vertex data from the given input.

Here, the parser is given a file containing four vertex
statements. Each vertex statement starts with a “v,” followed by
a space character, and then three integer or floating point
numbers delimited by spaces.

features/obj_file.feature

Scenario: Vertex records

Given file « a file containing:
v-110
v -1.0000 0.5000 0.0000
v100
v1i10

When parser — parse_obj_file(file)

Then parser.vertices[1] = point(-1, 1, 0)
And parser.vertices[2] = point(-1, 0.5, 0)
And parser.vertices[3] = point(1, 0, 0)
And parser.vertices[4] = point(1, 1, 0)

The resulting parser should have an array of vertices, each
recorded as a point. Note: it is significant that the array is 1-
based, and not 0-based! When you get to the next test, you'll see
that faces (triangles and polygons) refer to these vertices by
their index, starting with 1.
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TEST #10: OBJ FILE WITH TRIANGLE DATA

The parser should process triangle data from the given input.

The parser is now given a file containing four vertex statements
and two triangles. The triangles are introduced with the f
command (for “face”), followed by three integers referring to
the corresponding vertices. Note that these indices are 1-based,
and not o-based! That is, vertex number 1 is the first vertex
encountered in the file, not the second.

features/obj_file.feature

Scenario: Parsing triangle faces
Given file « a file containing:
v-110
v-100
v1i00
v110

f123
f134
When parser — parse_obj_file(file)
And g — parser.default_group
And t1 < first child of g
And t2 « second child of g
Then t1.p1 = parser.vertices|[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t2.p1 = parser.vertices[1]
And t2.p2 = parser.vertices[3]
And t2.p3 = parser.vertices[4]

Note also the test references a default_group property on the
parser. This Group instance receives all generated geometry. Your
parser should add the two triangles to this group.
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TEST #11: OBJ FILE WITH POLYGON DATA

The parser should process and triangulate polygonal data
from the given input.

Pushing the envelope a bit now, you’ll give your parser a file
containing five vertex statements and a single pentagonal face
consuming them all. Your ray tracer only knows how to render
triangles, though, so it needs to be able to break that polygon
apart into triangles.

features/obj_file.feature

Scenario: Triangulating polygons
Given file « a file containing;:
v-110
v-100
v100
v1i10
v020

f12345

When parser — parse_obj_file(file)
And g — parser.default_group
And t1 < first child of g
And t2 « second child of g
And t3 < third child of g

Then t1.p1 = parser.vertices[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t2.p1 = parser.vertices[1]
And t2.p2 = parser.vertices[3]
And t2.p3 = parser.vertices[4]
And t3.p1 = parser.vertices[1]
And t3.p2 = parser.vertices[4]
And t3.p3 = parser.vertices[5]

This will come up fairly often in OBJ files, whether found online
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or exported yourself. It’s often more efficient (space-wise) to
describe a planar polygon than to describe the same polygon as
a series of triangles. This is fine, but it means you need to
explicitly triangulate—convert to triangles—the polygons before
you can render them.

To keep things simple, just assume the incoming data always
describes convex polygons—those whose interior angles are all
less than or equal to 180°. When this is the case you can break
them into triangles using a fan triangulation. Visually, the
process looks like this:

o
Y

e d

The idea is that you pick one starting vertex, a, and then create a
triangle by combining it with the next two vertices in the list, b
and c. Then, starting with a again, create another triangle with c



and d. Continue in this fashion, starting each triangle with
vertex a, adding the last vertex of the previous triangle and the
next vertex in the list, and proceeding until all vertices have
been used.

In pseudocode, it looks like this:

# vertices is a 1-based array of at least three vertices
function fan_triangulation(vertices)
triangles — empty list

for index « 2 to length(vertices) - 1
tri ~ triangle(vertices[1], vertices[index], vertices[index+1])
add tri to triangles

end for

return triangles
end function

Note that the pseudocode here expects a 1-based array of points,
because that’s what the OBJ file format assumes. If your parser
is translating the OBJ 1-based indices to 0-based, then you can
feel free to implement your fan triangulation accordingly.

That’s the key to making this test pass—apply a fan
triangulation to the list of vertices and add the resulting
triangles to the default group.

TEST #12: NAMED GROUPS IN OBJ FILES

The parser should recognize a group statement and add
subsequent triangles to the named group.

Models can get fairly complex, and might be composed of
different pieces. Rather than a single model of a person, for
instance, the model might be composed of groups like “arm,’
“leg,” and “head.” These groups are identified in an OBJ file

M



with the g command.

This test reads an OBJ file, and then shows that the given
named groups are present and contain the expected triangles.

features/obj_file.feature

Scenario: Triangles in groups

Given file « the file "triangles.obj"

When parser — parse_obj_file(file)
And gl ~ "FirstGroup" from parser
And g2 — "SecondGroup" from parser
And t1 ~ first child of g1
And t2 « first child of g2

Then t1.p1 = parser.vertices[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t2.p1 = parser.vertices[1]
And t2.p2 = parser.vertices[3]
And t2.p3 = parser.vertices[4]

Create the following triangles.obj file as well, so you can feed it to
the test:

files/triangles.obj

v-110
v-100
v100
v110

g FirstGroup
f123

g SecondGroup
f134

To make the test pass, you'll need to keep track of which group

was most recently referenced and add all subsequent triangles
to that group.
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TEST #13: CONVERTING AN OBJ MODEL TO A
GROUP

The parser should convert a parsed OBJ model to a Group
instance.

Once you've parsed the OBJ file, you still need to add the model
to your scene. This test adds a function, obj_to_group(parser), which

converts a parsed OBJ file to a Group instance that you can then
add to your scene. It uses the same triangles.obj file as the previous
test, for input.

features/obj_file.feature

Scenario: Converting an OBJ file to a group
Given file < the file "triangles.obj"
And parser — parse_obj_file(file)
When g — obj_to_group(parser)
Then g includes "FirstGroup" from parser
And g includes "SecondGroup" from parser

With that piece done, you should be able to take some simple
OBJ files, parse them, and render them in your scenes! You can
find many online, searching for things like “simple obj file.” One
such site is this minimal page from an MIT computer graphics
class:
https://groups.csail.mit.edu/graphics/classes/6.837/F03/mode
Is. Another, which includes both high-and low-resolution
versions of the teapot, is from a computer graphics class at the
University of Utah:
https://graphics.cs.utah.edu/courses/cs6620/fall2013/?prj=5.

Many OBJ models you’ll find online consist of thousands of
triangles. Don’t be surprised if your ray tracer bogs down under
that kind of load! To speed things up, consider researching
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some optimizations, like the bounding box technique
mentioned in Chapter 14, Groups, and subdividing the triangles

A in a group into smaller groups. This can reduce the number of
triangles that need to be intersected by each ray.

Your renders are looking good, now, but they could still look
better. Those models, as rendered, are pretty obviously made up
of triangles. It’s time to teach your ray tracer how to smooth
those edges by lying about the normal vectors.



Smooth Triangles

Assuming everything was successful so far, you’ve got your ray
tracer rendering complex polygonal models that you've
imported from OBJ files! A glaringly obvious drawback, though,
is that these models are polygonal. The teapot in the following
figure is probably typical of what you're seeing:

After the initial thrill of “Oh my gosh! It works!” wears off,
you're left wondering what you can do to make that chunky



teapot look a bit more glossy.

Well, one thing you can do is find a higher resolution model.
The first one used about 240 triangles. The teapot in the
following figure uses closer to 6,400.

The difference is striking! It’s much cleaner looking, but it’s still
not perfect. It also takes much, much more work to render,
thanks to using twenty-five times as many triangles.

Fortunately, there’s a handy technique called normal



interpolation, which works by assigning a normal vector to each
vertex. Then, those vertex normals are used to interpolate the
normal vector at any given point on the triangle, basically lying
about the normal vector to trick the shading routines! Done
correctly, the result can mimic a flawlessly curved surface. The
following figure shows that high-resolution teapot again,
rendered without normal interpolation on the left, and with it
on the right.

Those tringles have been smoothed right over! It works for
lower resolution models, too. Check out the figure,
demonstrating smooth triangles with the low-resolution teapot.




In this case, though, you can see the weakness of this technique:
it doesn’t change the geometry—only the normal vector at the
point of intersection. Thus, the image silhouette remains blocky
and angular, giving the lie to the smooth appearance of the
surface.

To make this work, you’ll do the following things:

1. Add a new primitive, called smooth_triangle(p1, p2, p3, nl, n2, n3).

2. Add u and v properties to the intersection object. They’ll be used to
represent a location on the surface of a triangle, relative to its
corners.

3. Populate the u and v properties of the intersection when
intersecting a triangle.

4. Accept an intersection object as a parameter to both normal_at and
local_normal_at, and implement the normal calculation for smooth
triangles, with normal interpolation.

5. Pass the hit intersection when calling normal_at and local_normal_at.

That seems like a lot, but it will come together fairly quickly.



Each of the smooth_triangle tests assumes that the triangle to test,
tri, is prepared by the following setup:

features/smooth-triangles.feature

Background:

Given pl « point(0, 1, 0)
And p2 ~ point(-1, 0, 0)
And p3 ~ point(1, 0, 0)
And nl1 ~ vector(0, 1, 0)
And n2 — vector(-1, 0, 0)
And n3 ~ vector(1, 0, 0)

When tri — smooth_triangle(p1, p2, p3, nl, n2, n3)

Once that’s ready, start with making sure it constructs the
triangle correctly.

TEST #14: CREATING A SMOOTH TRIANGLE

A smooth triangle should store the triangle’s three vertex
points, as well as the normal vector at each of those points.

Assuming the background has already set up the smooth
triangle tri, this test just asserts that each of the properties has
been set correctly.

features/smooth-triangles.feature

Scenario: Constructing a smooth triangle
Then tri.pl = p1
And tri.p2 = p2
And tri.p3 = p3
And tri.nl =nl
And tri.n2 = n2
And tri.n3 =n3

Next, you’ll enhance your intersection structure.

TEST #15: ADDING U AND V PROPERTIES TO
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INTERSECTIONS

An intersection record may have u and v properties, to help
identify where on a triangle the intersection occurred, relative
to the triangle’s corners.

These u and v properties will be floating point numbers between
0 and 1. They are specific to triangles, so intersections with any
other shape won’t use them. Still, for triangles—and especially
for smooth triangles—they’re relevant. The following test
demonstrates how to construct an intersection record that
encapsulates the u and v properties, using a new
intersection_with_uv(t, shape, u, v) function.

features/intersections.feature

Scenario: An intersection can encapsulate u and v
Given s « triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
When i  intersection_with_uv(3.5, s, 0.2, 0.4)
Then i.u=0.2
Andiv=04
It’s safe to leave the u and v properties undefined when

intersections are constructed in any other way.

TEST #16: POPULATE U AND V ON TRIANGLE
INTERSECTIONS

When intersecting triangles, preserve the u and v values in the
resulting intersection.

Back to smooth triangles, this test shows what happens when
you intersect one with a ray. The resulting intersection should
have the u and v properties set.

features/smooth-triangles.feature
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Scenario: An intersection with a smooth triangle stores u/v
When r « ray(point(-0.2, 0.3, -2), vector(0, 0, 1))
And xs « local_intersect(tri, r)
Then xs[0].u = 0.45
And xs[0].v =0.25

This is actually really great, because you've already computed
both u and v! Remember when I said the Moller—Trumbore

algorithm had a feature that would come in handy later? Well,
now it’s later. That triangle intersection routine defined two
variables, u and v. Take those two variables and pass them to the

new intersection_with_uv function, in place of the existing call to

intersection.

For finding the intersection with a ray and a smooth triangle,
use the triangle intersection routine. It really is the same
calculation, but with the addition of storing u and v on the

intersection. If this requires some refactoring to happen in your
code, make sure you take care of that now, too.

Once you've got those u and v properties being stored in the
intersection, read on. You’re about to put them to use.

TEST #17: NORMAL INTERPOLATION

When computing the normal vector on a smooth triangle, use
the intersection’s u and v properties to interpolate the normal.

This test sets up an intersection with u and v and then passes
that intersection to normal_at. The point is intentionally set to the
origin to reinforce the fact that it isn’t used here—only v and v
should have any effect.

features/smooth-triangles.feature
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Scenario: A smooth triangle uses u/v to interpolate the normal
When i  intersection_with_uv(1, tri, 0.45, 0.25)
And n — normal_at(tri, point(0, 0, 0), i)

Then n = vector(-0.5547, 0.83205, 0)
Make this pass by adding the intersection object representing
the hit as a parameter to both normal_at and local_normal_at. To
preserve a consistent API, add this parameter to the
local_normal_at function for every shape, even though it’s only

actually used for the smooth triangles.

Once you've got that parameter passed to the smooth triangle’s
local_normal_at function, you interpolate the normal by combining
the normal vectors of the triangle’s vertices according to the
hit’s u and v properties, as given in the following pseudocode:

function local_normal_at(tri, point, hit)
return tri.n2 * hitu +
tri.n3 * hit.v +
tri.nl * (1 - hit.u - hit.v)
end function
Once that’s passing, the last bit for making this work is to make

sure the hit gets passed to the normal calculation.

TEST #18: PASS THE HIT TO THE NORMAL_AT
FUNCTION

The prepare_computations function should pass the hit itself to the
call to normal_at.

Construct an intersection with tri, and some u and v values.
When prepare_computations is called on that intersection, the

normal should be calculated according to the rules for the
smooth triangle, which requires that the intersection be passed

to normal_at.



features/smooth-triangles.feature

Scenario: Preparing the normal on a smooth triangle
When i ~ intersection_with_uv(1, tri, 0.45, 0.25)
Andr  ray(point(-0.2, 0.3, -2), vector(0, 0, 1))
And xs « intersections(i)
And comps ~ prepare_computations(i, r, Xs)
Then comps.normalv = vector(-0.5547, 0.83205, 0)

Once that’s passing, it’s time to revisit your OBJ parser and plug
these smooth triangles in there.
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Smooth Triangles in OBJ Files

Your OBJ parser is already quite close to supporting smooth
triangles. All it needs now is to support the vertex normal (vn)
command and to update the way it parses the f (“face”)
command.

TEST #19: OBJ FILE WITH VERTEX NORMAL DATA

Vertex normal data should be correctly imported from an OBJ

file.

This test sets up an OBJ file that contains four vertex normal
statements (“vn”), and then shows that each of them is imported
as a vector. Note that the normals collection is 1-based, just as the

vertices collection was.

features/obj_file.feature

Scenario: Vertex normal records
Given file < a file containing:

vn001
vn 0.707 0 -0.707
vnl23

When parser — parse_obj_file(file)

Then parser.normals[1] = vector(0, 0, 1)
And parser.normals[2] = vector(0.707, 0, -0.707)
And parser.normals[3] = vector(1, 2, 3)

The normals are imported as is, with no normalization or other
processing done. Once those are imported, it’s just a matter of
associating each of those vertex normals with a vertex, which
you’ll do next.


http://media.pragprog.com/titles/jbtracer/code/features/obj_file.feature

TEST #20: FACES WITH NORMAL VECTORS

Vertex normal data should be correctly associated with face
data from an OB/ file.

The f command that you implemented earlier is only half done,

really. The following test demonstrates a more complete version
of the syntax, permitting the vertices of a face to be associated
with normal vectors.

features/obj_file.feature

Scenario: Faces with normals
Given file < a file containing:
v010
v-100
viO0oO0

vn-100
vhn100
vn010

f1//3 2//1 3//2
f1/0/3 2/102/1 3/14/2
When parser — parse_obj_file(file)
And g — parser.default_group
And t1 < first child of g
And t2 « second child of g
Then t1.p1 = parser.vertices|[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t1.n1 = parser.normals[3]
And t1.n2 = parser.normals[1]
And t1.n3 = parser.normals[2]
And t2 =tl

It turns out that the f command supports the following
variations, the first of which you’ve already implemented:
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f123
f 1/2/3 2/3/4 3/4/5
£1//3 2//4 3//5

The forward slash is used to delimit up to three different kinds
of information per vertex. The first number in each triple is the
vertex index itself. The second is an optional texture vertex
(which you won’t implement for this feature and can be
ignored). The third is an optional index into the list of vertex
normals, corresponding to the vn command you just
implemented.

To make this test pass, your f command needs to check to see if
vertex normals are present for the vertices, and if they are, the
command should call smooth_triangle instead of triangle.

Make that test pass. Once everything is good, you're ready to
sign off on this chapter!



Putting It Together

You can find 3D models to render in a lot of places online by
searching for “free 3D models.” Here are a few of the first hits I
found with that search:

e TurboSquid'??! (paid, but has a section of free models)
o Free3zD!?3!
o cgtrader®¥ (paid, but has a free section)

e Claralot?s!

NASA has a library of free 3D resources, including models, at
https://nasasd.arc.nasa.gov. Many of them are quite large
(hundreds of thousands of triangles), but I was able to find
several models with just a few thousand, including this adorable
little guy:


https://nasa3d.arc.nasa.gov

Some caveats apply to any model you find online, though:




e Many of these models are in formats other than OBJ. Online

conversion tools vary (just search for “convert 3D formats” or
something similar), but I can’t vouch for any of them. It’s best,
when possible, to find OBJ files directly, rather than relying on
converting. (Still, I converted the previous astronaut model from a
3DS format to OBJ using the convertor at
http://www.greentoken.de/onlineconv/.)

e These models are not of uniform size and are rarely centered

conveniently at the origin. My advice is to have your OBJ parser
print the minimum and maximum extents of each model it imports,
which you can then use to translate and scale the model in your
scene.

¢ These models often have the y and z axes swapped from what this
book presents, with z being the “up” axis instead of y. If you find
this to be the case, a quick rotation around x by -n/2 should do the
trick.

Lastly, you can have a lot of fun if you can get your hands on a
3D modeling program. Blender™®® is a free, cross-platform
option which is incredibly powerful and can export models in
OBJ format. Blender has a correspondingly challenging learning
curve, but if you're up to it, Blender can be wonderful to play
with. You can use it to create your own models or just convert
existing models to OBJ. You can even (with Blender’s
“decimate” modifier) simplify existing models so they use fewer
triangles.

Once you're done having fun with polygonal models, read on.
The last feature awaits: constructive solid geometry.

Footnotes
[21] https://www.tandfonline.com/doi/abs/10.1080/10867651.1997.10487468
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Chapter 16

Constructive Solid Geometry
(CSG)

You’ve made it through matrix transformations, Phong
illumination, reflection, refraction, and ray-object intersections
for a variety of primitive shapes. For this last feature, you’ll
implement constructive solid geometry, or CSG—a method of
combining those primitives via set operations. This lets you
create much more complex shapes, like these:

It’s true that any of those shapes could have been assembled in a



3D modeling app and then exported to an OBJ file, which you
could have imported and rendered. Using CSG is better in this
case for two significant reasons:

1. To get per-triangle coloring to work, you’d need to implement a
parser for Wavefront MTL material files, and make your OBJ parser
implement vertex textures to map material definitions to vertices.
(Whew!) With CSG, you can strategically apply textures and colors
to different surfaces within the model, using only what you’ve
already implemented.

2. You’d need hundreds or even thousands of triangles to render these
shapes, while CSG lets you use far fewer primitives. The tricylinder
on the left of the previous image required only three cylinders; the
carved cube in the middle is just three cylinders, a cube, and a
sphere; and the hollow sphere on the right is a sphere and twelve
cubes. Add the cube representing the room, and the entire scene
consists of just 22 shapes!

CSG works by taking two or more primitive shapes and
combining them using any of three different set operations:
union, intersection, and difference.



Union combines the inputs into a single shape, preserving all
external surfaces. Here’s a cube and a sphere, which have been
combined via a union.

W/
£ Why use a CSG union instead of a group?

Good question! In many instances, a group is definitely
simpler, but when you’re dealing with transparent and
reflective objects, like glass, their interior surfaces can
contribute unwanted reflections. Here’s an example with
two overlapping glass spheres. On the left, they were
combined using a group. On the right, a CSG union was

used.
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The picture doesn’t lie; using a union instead of a group
gets rid of those interior surfaces and gives you a truer
transparency.

Intersection preserves the portion of the inputs that share a
volume (where the shapes intersect each other), resulting in a
single shape with those combined surfaces. This is the



intersection between the cube and sphere from the previous
image.

Difference preserves only the portion of the first shape where
it’s not overlapped by the others. Here’s the difference between
the original cube and sphere, effectively carving the sphere out
of the cube.

Your implementation of CSG will support all three of these
operations, and you’ll learn how to use them together to
generate an enormous variety of different shapes and effects.

Are you ready? Here we go.



Implementing CSG

For simplicity’s sake, your implementation will treat all CSG
operations as strictly binary, meaning that each one takes
exactly two shapes as input. This may seem restrictive, but since
a CSG object is itself a shape, you can build arbitrarily complex
CSG operations by combining them in a hierarchy, like this:
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You'll render these shapes by intersecting them with a ray, as
you’ve done with every other shape you’ve implemented.
Intersecting a ray with a CSG shape begins just like intersecting
one with a Group: you first intersect the ray with the shape’s
children. Then, you iterate over the resulting intersection
records, tracking which ones are inside which child and filtering
out those that don’t conform to the current operation. The
resulting list of intersections is then returned.



The devil, as ever, is in the details. We’ll walk through this
process one bit at a time, following these steps:

1. Create a CSG shape by providing an operation and two operand
shapes, left and right.

Implement the rules for union, intersection, and difference.
Filter a list of intersections using the rules from step 2.
Demonstrate what happens when a ray misses a CSG object.

CLEE SIS

Demonstrate what happens when a ray hits a CSG object.

Begin by creating the CSG shape itself.

TEST #1: CREATING A CSG SHAPE

A CSG shape is composed of an operation and two operand
shapes.

Instantiate a new CSG shape. For the sake of the test, use the
union operation and give it a sphere and a cube for the two
operands.

features/csg.feature

Scenario: CSG is created with an operation and two shapes
Given s1 « sphere()
And s2 « cube()
When c ~ csg("union", sl, s2)
Then c.operation = "union”
And c.left = s1
And c.right = s2
And sl.parent = c
And s2.parent = ¢

The operands are referred to as left and right, mirroring the

structure of a binary tree where the two children of a parent are
arranged with one on the left and one on the right. Note that
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your code should set the parent attribute of both child shapes to
the CSG shape itself, just as if they were part of a group.

TEST #2: EVALUATING THE RULE FOR A CSG UNION
OPERATION

A CSG union preserves all intersections on the exterior of both
shapes.

Consider the following illustration, showing a ray intersecting
two overlapping spheres. If the two spheres represent a union
operation, the highlighted intersections are the ones to be
preserved; the rest are ignored.

You’ll encode this rule in a new function, called
intersection_allowed(op, lhit, inl, inr). The arguments are interpreted as
follows:

¢ op is the CSG operation being evaluated.



e lhit is true if the left shape was hit, and false if the right shape was hit.
e inlis true if the hit occurs inside the left shape.

e inris true if the hit occurs inside the right shape.

Referring to the previous figure, and assuming the ray moves
from left to right, you would evaluate the four intersections with
the following calls to intersection_allowed:

e intersection_allowed("union", true, false, false)—the hit is on the
outside of the left shape.

e intersection_allowed("union", false, true, false)—the hit is on the
outside of the right shape, while inside the left shape.

e intersection_allowed("union", true, true, true)—the hit is on the inside
of the left shape, while inside the right shape.

e intersection_allowed("union", false, false, true)—the hit is on the inside
of the right shape.

You can arrange the arguments in those calls to form a truth
table, a method of showing boolean input values and the
expected output of some operation on them. The following test
describes the basic outline you’ll use to exercise all three
operations, as well as a truth table to describe how the
intersection_allowed function works with the union operation.

features/csg.feature

Scenario Outline: Evaluating the rule for a CSG operation
When result ~ intersection_allowed("<op>", <lhit>, <inl>, <inr>)
Then result = <result>

Examples:
| op | lhit |inl |inr |result |
| union | true |true |true |false |
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| union | true |true |false |true |

| union | true | false | true | false |
| union | true | false | false | true |
| union | false | true |true |false |
| union | false | true | false | false |
| union | false | false | true |true |
| union | false | false | false | true |

The goal is to implement intersection_allowed in such a way as to
make sure it returns the correct answer for all possible
combinations of inputs, thus allowing only the correct
intersections.

To make the test pass, consider what the union operation
actually means. You only want the intersections that are not
inside another object. If the hit is on the left object, it must not
also be inside the right, and if it is on the right, it must not
simultaneously be inside the left. In pseudocode, the logic looks
something like this:

function intersection_allowed(op, lhit, inl, inr)
if op is "union”
return (lhit and not inr) or (not lhit and not inl)
end if

# default answer
return false
end function

Implement that to make the test pass. Next you'll tackle the rule
for the intersect operation.

TEST #3: EVALUATING THE RULE FOR A CSG
INTERSECT OPERATION

A CSG intersect preserves all intersections where both shapes
overlap.



Take a look at the next illustration, again showing a ray
intersecting two overlapping spheres. This time, though, the
highlights show which intersections are kept by a CSG intersect
operation.

The intersections are chosen in such a way as to preserve the
volume that the shapes have in common. Add the following
truth table to the end of the one you started in the previous test,
showing how the intersection_allowed function ought to behave in
this case.

features/csg.feature

# append after the union examples...

| intersection | true |true |true |true |
| intersection | true |true | false | false |
| intersection | true | false | true |true |
| intersection | true | false | false | false |
| intersection | false | true |true |true |
| intersection | false | true | false | true |
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| intersection | false | false | true | false |
| intersection | false | false | false | false |

To make those examples pass, you want to allow only those
intersections that strike one object while inside the other. If a
ray hits the object on the left, the intersection must be inside the
right, and vice versa. In pseudocode, that logic looks like this:

function intersection_allowed(op, lhit, inl, inr)
if op is "union”
return (lhit and not inr) or (not lhit and not inl)
else if op is "intersect"
return (lhit and inr) or (not lhit and inl)
end if

return false
end function

Get those new examples passing, and then move on to the third
CSG operation: difference.

TEST #4: EVALUATING THE RULE FOR A CSG
DIFFERENCE OPERATION

A CSG difference preserves all intersections not exclusively
inside the object on the right.

Take a look at the following diagram of two overlapping
spheres. The intersections are now highlighted to represent a
CSG difference operation.



Add this last truth table to the end of the other two, to show how
the difference operation should work.

features/csg.feature

# append after the intersection examples...
| difference |true |true |true |false |
| difference |true |true |false |true |
| difference |true | false | true | false |
| difference |true |false | false | true |
| difference | false | true |true |true |
| difference | false | true | false | true |
| difference | false | false | true | false |
| difference | false | false | false | false |

The difference operation will keep every intersection on left that

is not inside right, and every intersection on right that is inside left.
Written as pseudocode, it looks like this:

function intersection_allowed(op, lhit, inl, inr)
if op is "union”
return (lhit and not inr) or (not lhit and not inl)
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else if op is "intersect"

return (lhit and inr) or (not lhit and inl)
else if op is "difference”

return (lhit and not inr) or (not lhit and inl)
end if

return false
end function

Great! Once those tests are all passing, you're ready to start
filtering intersections based on those rules.

TEST #5: FILTERING A LIST OF INTERSECTIONS

Given a set of intersections, produce a subset of only those
intersections that conform to the operation of the current CSG
object.

Once you have the intersection_allowed function working, you get to

use it in the next part of your implementation of CSG:
intersection filtering. In the big scheme of things, when your
renderer intersects a ray with a CSG object, the CSG object will
produce a list of intersections between that ray and its children.
This filter_intersections(csg, xs) function accepts that list (xs),

evaluates each intersection with the intersection_allowed function,
and returns a new intersection list consisting of those that pass.

The following test creates a csg object composed of two shapes.
Then it creates a list of intersections (xs) and calls
filter_intersections. Finally, it checks that the two result intersections
are what is expected for the current operation.

features/csg.feature
Scenario Outline: Filtering a list of intersections

Given s1 « sphere()
And s2 — cube()
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And ¢ « csg("<operation>", s1, s2)

And xs  intersections(1:s1, 2:s2, 3:s1, 4:s2)
When result — filter_intersections(c, xs)
Then result.count = 2

And result[0] = xs[<x0>]

And result[1] = xs[<x1>]

Examples:

| operation | x0 | x1 |
| union |0 |3 |

| intersection | 1 |2 |

| difference |0 |1 |

For this to work, your filter_intersections function needs to loop
over each intersection in xs, keeping track of which child the

intersection hits and which children it is currently inside, and
then passing that information to intersection_allowed. If the

intersection is allowed, it’s added to the list of passing
intersections.

Here it is in pseudocode:

function filter_intersections(csg, xs)
# begin outside of both children
inl « false
inr — false

# prepare a list to receive the filtered intersections
result — empty intersection list

mnyrr

for each intersection "i" in xs
# if i.object is part of the "left" child, then lhit is true
lhit « csg.left includes i.object

if intersection_allowed(csg.operation, lhit, inl, inr) then
add i to result
end if

# depending on which object was hit, toggle either inl or inr
if 1hit then
inl « not inl



else
inr « not inr
end if
end for

return result
end function
Note the line with csg.left includes i.object, just at the start of the for

loop. The implementation of this will be up to you, but A includes
B should behave like this:

e If A is a Group, the includes operator should return true if child
includes B for any child of A.

e If A is a CSG object, the includes operator should return true if
either child of A includes B.

e If A is any other shape, the includes operator should return true if A
is equal to B.

In other words, it should recursively search a subtree, looking
for the given object, to see whether or not the intersection
occurred on the left side of the CSG tree. If it did, then 1hit must

be true.

Go ahead and make that test pass. Once you do, you can move
on to the last two tests: making sure that the actual intersection
routine functions correctly.

TESTS #6 AND 7: INTERSECTING A RAY WITH A CSG
OBJECT

A ray should intersect a CSG object if it intersects any of its
children.

The following tests set up a CSG object and a ray and check to



see whether or not the ray intersects. The first test makes sure
that a ray misses when it should miss, and the second test
makes sure that it hits when it should hit. The second test also
applies a transformation to one of the primitives to ensure that
the resulting intersections are being filtered correctly.

features/csg.feature

Scenario: A ray misses a CSG object
Given ¢ « csg("union", sphere(), cube())
And r  ray(point(0, 2, -5), vector(0, 0, 1))
When xs ~ local_intersect(c, r)
Then xs is empty

Scenario: A ray hits a CSG object
Given s1 « sphere()
And s2 — sphere()
And set_transform(s2, translation(0, 0, 0.5))
And ¢ « csg("union", s, s2)
Andr < ray(point(0, 0, -5), vector(0, 0, 1))
When xs ~ local_intersect(c, r)
Then xs.count = 2
And xs[0].t =4
And xs[0].object = s1
And xs[1].t = 6.5
And xs[1].object = s2

Make this pass by intersecting the ray with the left and right
children and combining the resulting intersections into a single
(sorted!) list. The combined intersections should be passed to
filter_intersections, and the filtered collection should then be
returned.

In pseudocode, it looks like this:

function local_intersect(csg, ray)
leftxs — intersect(csg.left, ray)
rightxs « intersect(csg.right, ray)
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xs « combine leftxs and rightxs
XS « sort xs by t

return filter_intersections(csg, xs)
end function

And that completes your implementation of CSG shapes! You
don’t even need to compute a normal vector; the intersection
records always point to the primitive object that was hit, and
not the parent CSG shape, which means the primitive shape
itself will always perform the normal computation. Neat!

One last thing to talk about is how to apply color to CSG shapes.



Coloring CSG Shapes

You may recall that at the beginning of this chapter I said that it
was possible to strategically color portions of a CSG shape. It’s
true—the key is to remember that intersecting a ray with a CSG
shape preserves the original intersections with the original
primitive shapes. Think about how your ray tracer determines
the color to use for a given intersection. In Chapter 6, Light and
Shading, you stored a material structure on each object and used
the material from the intersected object to determine what color
the intersection should be.

This still holds true with CSG intersections. Consider again this
illustration of a red sphere subtracted from a yellow cube.

The faces of the cube remain yellow, but the portion that was
subtracted away retains the red of the sphere! This is because
those intersections were from the sphere and not the cube and
so keep the original coloring of the sphere.



This works even with reflective and transparent surfaces, which
means you can make certain faces “disappear” by making their
corresponding shape transparent. By default, transparent
surfaces will still cast shadows, but if you hark back to Putting It
Together, you'll see one of the optional things to consider is for
shapes to “opt out” of casting shadows. Implementing that, and
then subtracting transparent shapes from solids, lets you do
nifty things like this sphere with a wedge removed from it:

You can form the wedge by rotating a cube 45 degrees around
the y axis and then making it narrower by scaling it smaller in z.
Make the wedge transparent, position it so it intersects the
sphere, and then subtract it from the sphere. It’s a fun trick!



Putting It Together

Thinking in terms of CSG can be challenging if you're not used
to it. It takes some practice to learn to see the world around you
as unions, intersections, and differences of primitive shapes.
Here are some things you can do with CSG and some hints for
how to construct them.

e Alens. (The intersection of two spheres.)

e A six-sided die. (A cube, mostly, but using CSG difference
operations with scaled spheres to form the pips.)

e A block letter or number. (Perhaps from a flattened cube, with
pieces shaved off using differences with cubes and cylinders.)

e A flower. (Perhaps form the petals out of spheres, strategically
scaled and shaped by intersecting other spheres.)

¢ The planet Saturn. (Form each ring by subtracting one cylinder
from another.)

If you're feeling ambitious, think of how you might increase the
realism for each of these. For example, dice in real life are not
perfect cubes, but instead have rounded edges and corners.
How would you create that effect, using just what you've
implemented so far in your ray tracer?



What else can you imagine? Furniture? Buildings? Dragons,
knights, and castles? Trains, planes, or automobiles? Might as
well make a spaceship or two, because the sky is the limit!

At this point, you're as good as done with the Ray Tracer
Challenge, but go ahead and turn the page anyway. Let’s talk
about where you might take your ray tracer next, because like all
the best projects, there’s always another feature you can add.

Copyright © 2019, The Pragmatic Bookshelf.



Chapter 17

Next Steps

Here you are at the end. What a ride, eh? From tuples and
matrices, you've proceeded all the way through ray-sphere
intersections, shading and shadows, patterns, reflections and
refractions, and on up to constructive solid geometry. You've
built something to be proud of.

As with any good project, though, the “end” is just a line drawn
in the sand. The book ends here, but you can add so much more
to your ray tracer, and the path you take is entirely up to you.
New features are limited only by your imagination (and, maybe,
your perseverance in the face of a bit more math). Here are
some ideas that you might use as jumping-off points for your
own experimentation and research.

Let’s start by casting light on some light source variations.



Area Lights and Soft Shadows

Your ray tracer currently implements point lights, which exist at
a single point and have no size. These lights cast sharp, crisp
shadows with perfectly defined outlines. But in the physical
world, a point light doesn’t actually exist. Light sources have
dimension, and the shadows they cast tend to be fuzzy around
the edges as a result.

Consider the illustration, which compares shadows cast by a
point light (on the left), with shadows cast by an area light (on
the right).

Those blurred shadows don’t come cheap. Recall from Chapter
8, Shadows, that your current shadow test casts a single ray
from the point of intersection to the light source. This results in
a boolean “yes/no” result, answering the question of whether
the point is in shadow. For an area light, you must cast multiple



shadow rays, and the answer is no longer “yes” or “no,” but an
intensity value telling you how much shadow exists at that
point.

To implement an area light, follow these steps:

1. Decide how many shadow rays you want to cast for each area light.
The more you cast, the nicer the shadow looks, but it also means
your ray tracer has to do more work per pixel.

2. Cast each ray from the point of intersection to a different point on

your area light.
3. Compute the light’s intensity as the average number of rays that
weren’t blocked by any intervening surfaces.

Light sources are of many types, though. Read on for another
one.



Spotlights

Another feature of point lights is that they shine equally in every
direction. But it can be fun to break that assumption and have
your lights focus on a particular point. The result is a spotlight,
like this:



To make this work, assign your light a direction and an angle



that describes the beam’s width. Then, any point that falls
outside the light’s cone is considered to be in shadow. If you
want the beam to have a soft boundary, you can define a second
“fade” angle, inside of which the beam blends from full intensity
to none.

Implementing Spotlights

Remember, the dot product of two unit vectors is the same as
the cosine of the angle between them. If you take the dot
product of the light’s direction vector, and the vector from the
point of intersection to the light, you’ll end up with the cosine of
the angle between them. Relate that to the angle of the spotlight
itself, and you’ve got the feature half done!

N

Spotlights are an effective way to focus attention on a specific
point in your scene, but they’re not the only way. Here’s
another.



Focal Blur

Focal blur helps bring the viewer’s attention to the subject of the
image by making it appear sharply in focus. Objects that are too
far from—or too near to—the camera will appear out of focus.

Here’s an example:

The focus here is on the three balls in the foreground; the smaller balls in the
background and the reflections on the walls are blurred to emphasize their
distance and lack of importance.

To make this work, you need to simulate a camera with a larger aperture—the
hole through which light enters the camera. By default, your ray tracer
mimics a pinhole camera, with a hole exactly large enough for a single ray of
light. This allows the entire scene to appear crisply in focus. By making the
aperture larger, light can arrive from multiple points at once, blurring the
picture at those places.

To implement this you need to specify the size of the aperture and the focal
length of the camera. Anything situated at the camera’s focal length will be in
focus, so you generally put the subject of the picture there. And the wider the
aperture, the blurrier things get.

In



Implementing a Camera

, you set your canvas 1 unit in front of the camera. This effectively hard-
coded your focal length to 1. Changing the focal length basically positions
your canvas that distance from the camera. Once you’ve got your canvas
situated, you cast multiple rays for each pixel, and the more, the better.
Instead of casting them all from a single point at the origin, you’ll place your
aperture at the origin and choose several points on its surface. Then, for each
of those points, construct a ray that passes from the point through the current
pixel on the canvas and out into the scene. Average the colors for each of the
rays you cast per pixel, and there’s your focal blur!

We can summarize:

Choose a size for the aperture.

Choose a distance for the canvas.

Cast multiple rays from random points on the aperture, through the pixel on the canvas.
Set the pixel to the average of all rays cast through it.

Casting multiple rays per pixel like this is computationally expensive,
though, working a lot harder for each pixel. Still, it’s a versatile technique
that can create a variety of effects. Read on for another one!



Motion Blur

Motion blur is the effect you see in photographs of a quickly
moving object, where it appears blurred because it was in
motion while the camera’s shutter was open. Not only can this
draw a viewer’s attention, it can make your scenes more
dynamic by adding a sense of action. A skilled artist can do this
with just a few strokes of a pen, but for the rest of us, there’s
motion blur, like this:

In ray tracing, you could simulate this effect by rendering your
scene multiple times, moving one or more objects a bit in each
frame, and then averaging all the frames together. Here’s
another way, though: for each pixel of your image, cast multiple
rays and assign them each a time value. When a ray intersects a
moving object, your ray tracer transforms the object according
to the associated time value before intersecting it with the ray.
The resulting color for each ray is then averaged before being
written to your canvas.

You can make optimizations, as well. If you define a bounding
box around the moving object, completely containing it at every
point of its motion, then you only need to cast additional rays if
the first ray happens to intersect that bounding box. This



prevents one small moving object from bogging down the entire
scene unnecessarily.



Antialiasing

Because pixels are not infinitely small, diagonal lines will tend
to be rendered as stairsteps, or jaggies. The following
illustration shows a zoomed-in view:

(.

This phenomenon is called aliasing, and a lot of effort goes into working
around it in production-quality imagery. One such antialiasing technique
renders the image at much higher resolution (double, triple, or more), and
then requires a separate image editor to resample the picture to a smaller
resolution. This essentially averages the values of adjacent pixels, and helps



smooth those jagged stairsteps.

You can antialias in a single step, though, using a technique called
supersampling. Instead of casting a single ray for each pixel, you cast
multiple rays, each passing through a different (and perhaps random) point
offset from the center of the pixel, and average their results. Once again, the
more rays you cast, the higher the quality of the result. The

image

is an antialiased example of the previous image, rendered using this
supersampling technique.

.
More rays equals more work, so don’t expect this technique to come cheaply.

You can optimize it, though. For instance, instead of always casting the same
number of rays per pixel, you can start by casting one at each corner of the



pixel, and one in the pixel’s center. If any of the corners differ from the
center by more than some threshold amount, you can subdivide that quarter
of the pixel and repeat the process, recursively. Even then, because of the
time and energy cost, you’ll want to save this for the end of the production
process.

You can do plenty of other things to your ray tracer that don’t require casting
more rays. For instance, you can wallpaper textures and imagery onto shapes
with texture maps.



Texture Maps

In addition to the solid textures (checkers, rings, and so forth)
that you've already implemented, it’s possible to apply an
external image to an object as a texture map. Here’s an example
using a planar mapping, a cylindrical mapping, and a spherical

mapping:

For a planar mapping, you take an image and map an (X, y) pair in object
space to a corresponding pixel on the image. You’ll usually need to do some
interpolation as well, since the point in question will often lie between
adjacent pixels.

The cylindrical mapping is a bit trickier, since you need to convert a point on
the surface of a cylinder to an image, much like the label on a soup can. You
can save yourself a headache if you assume you’re always mapping onto a
unit cylinder between y=0 and y=1.

The spherical mapping is similar to the cylindrical mapping, but with
different behavior at the poles, where an entire row of the image maps to a
single point on the sphere. You’ll need to convert a 3D point in space into a
2D point on the surface of the sphere, much like finding the latitude and



longitude for a point on the earth’s surface.

You can do other mapping types as well: cubical, toroidal, and so forth. In
each case, target a shape of a constant size (radius of 1, for instance) and
make the math work that way. Then, with a bit of scaling, the result can be
quite convincing!

In fact, mucking with the surface features of your primitives is a tried and
true way to make your scenes shine. Here’s another fun technique, in which
you lie (in a perfectly moral way) to your renderer.



Normal Perturbation

Hark back to Smooth Triangles, when you made triangles
appear curved by modifying the normal that was reported to the
renderer. It turns out that this technique can be used in a
variety of ways, basically “lying” to the renderer so that the
surface shading is done with modified normals. Check out the
image, showing this technique applied to spheres and a plane.






By attaching a function to the shape (perhaps directly, or maybe
via the material), you can have your normal_at function call the
attached function to perturb, or add a small vector to, the
normal at the given point. In the preceding image, the red
sphere uses a sine function to make the surface appear wavy,
the blue sphere uses another function to give the surface a
quilted appearance, and the green sphere and the plane are both
using three-dimensional noise to make the surface look
deformed.

This technique can be applied to glass to make it appear etched
or frosted, too. And you can even combine it with texture
mapping to let an image file define a normal map that describes
how the normal should be perturbed at any given point.

Besides textures, you can also explore new shape primitives, to
increase the variety of your scenes. One such primitive you
might try is the torus.



Torus Primitive

A torus is a ring or donut shape, like this:

They make really neat, versatile primitives, but they’re a bit more advanced
than the primitives you’ve implemented so far. Spheres, cylinders, and cones
are called quadric surfaces, which means they can be described by second-
degree equations (those where no variable is raised to a power higher than 2).
A torus, though, is a quartic surface, with variables raised to the fourth
power. This means you need a quartic equation solver to find the intersection
between a torus and a ray.

But that just means you get to dig deeper than you have before, right? If you
don’t already have access to a quartic equation solver, you might take a look
at the Durand-Kerner method.

1271

It’s not the fastest, but is less intimidating than some other methods. And
Marcin Chwedczuk has written an article called “Ray tracing a torus”

[28]




that may help cast some light on the topic for you.
See what other primitive shapes you can implement!



Wrapping It Up

As exhaustive as that list might have seemed, it was still just a
sampling of what you can try. You can do so much more, like
volumetric effects such as smoke, fog, clouds, and fire. Or
maybe radiosity and photon mapping for more realistic lighting
effects, or parallelization for faster rendering on multiprocessor
machines. You're never truly done, but that’s the wonderful
thing about projects like this!

The rest is up to you. Pursue the features that excite you most.
Explore your own interests. Make this ray tracer your own. But
most important of all: have fun!

Footnotes

[27] https://en.wikipedia.org/wiki/Durand-Kerner_method

[28] https://marcin-chwedczuk.github.io/ray-tracing-torus
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Appendix 1

Rendering the Cover Image

The cover image for this book was rendered using the very ray
tracer that the book describes, which means that once you've
implemented the necessary features, you can render it too!

To render the cover image, your ray tracer must support the
features described up through Chapter 12, Cubes. The actual
cover image was rendered using two light sources, though the
second is optional.

The cover image scene is described here in YAML™! format. If a
YAML parser exists for your programming language, you may
be able to build the scene from this description directly;
otherwise, you’ll need to translate this description into whatever
API you’ve built for your own renderer.

If rendered as described, you’ll get something that looks like
this:



And here’s the scene description itself:

cover.yml

- add: camera
width: 100
height: 100
field-of-view: 0.785
from: [ -6, 6, -10 ]
to: [ 6,0, 6 ]
up: [-0.45,1,0]

- add: light


http://media.pragprog.com/titles/jbtracer/code/cover.yml

at: [ 50, 100, -50 ]
intensity: [ 1, 1, 1 ]

# an optional second light for additional illumination
- add: light

at: [ -400, 50, -10 ]

intensity: [ 0.2, 0.2, 0.2 ]

- define: white-material
value:
color: [1,1,1]
diffuse: 0.7
ambient: 0.1
specular: 0.0
reflective: 0.1

- define: blue-material
extend: white-material
value:
color: [ 0.537, 0.831, 0.914 ]

- define: red-material
extend: white-material
value:
color: [ 0.941, 0.322, 0.388 |

- define: purple-material
extend: white-material
value:
color: [ 0.373, 0.404, 0.550 ]

- define: standard-transform
value:
- [ translate, 1, -1, 1 ]
- [ scale, 0.5, 0.5, 0.5 ]



- define: large-object
value:
- standard-transform
- [ scale, 3.5, 3.5, 3.5 ]

- define: medium-object
value:
- standard-transform
- [ scale, 3, 3, 3 |

- define: small-object
value:
- standard-transform
- [ scale, 2, 2, 2 |

- add: plane

material:
color: [1,1,1]
ambient: 1
diffuse: 0
specular: 0

transform:
- [ rotatex, 1.5707963267948966 ] # pi/2
- [ translate, 0, 0, 500 ]

- add: sphere
material:



color: [ 0.373, 0.404, 0.550 ]

diffuse: 0.2

ambient: 0.0

specular: 1.0

shininess: 200

reflective: 0.7

transparency: 0.7

refractive-index: 1.5
transform:

- large-object

- add: cube
material: white-material
transform:
- medium-object
- [ translate, 4, 0, O ]

- add: cube
material: blue-material
transform:
- large-object
- [ translate, 8.5, 1.5, -0.5 ]

- add: cube
material: red-material
transform:
- large-object
- [ translate, 0, 0, 4 ]

- add: cube
material: white-material
transform:
- small-object
- [ translate, 4, 0, 4 ]

- add: cube
material: purple-material
transform:
- medium-object
- [ translate, 7.5, 0.5, 4 |

- add: cube
material; white-material
transform:



- medium-object
- [ translate, -0.25, 0.25, 8 ]

- add: cube
material: blue-material
transform:
- large-object
- [ translate, 4, 1, 7.5 ]

- add: cube
material: red-material
transform:
- medium-object
- [ translate, 10, 2, 7.5 ]

- add: cube
material: white-material
transform:
- small-object
- [ translate, 8, 2, 12 ]

- add: cube
material: white-material
transform:
- small-object
- [ translate, 20, 1, 9 ]

- add: cube
material: blue-material
transform:
- large-object
- [ translate, -0.5, -5, 0.25 ]

- add: cube
material: red-material
transform:
- large-object
- [ translate, 4, -4, 0 ]

- add: cube
material: white-material
transform:
- large-object
- [ translate, 8.5, -4, 0 ]



- add: cube
material: white-material
transform:
- large-object
- [ translate, 0, -4, 4 ]

- add: cube
material: purple-material
transform:
- large-object
- [ translate, -0.5, -4.5, 8 ]

- add: cube
material: white-material
transform:
- large-object
- [ translate, 0, -8, 4 |

- add: cube
material: white-material
transform:
- large-object
- [ translate, -0.5, -8.5, 8 ]

Give it a try. Experiment with it. Apply different materials,
patterns, and lighting. Try different shapes and perspectives.
See what you can come up with!

Footnotes

[29] http://yaml.org
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